BT8: viết các biểu thức sau thành đa thức 1, (a-5)(a^2+5a+25) 2, (x+2y)(x^2-2xy+4y^2)
Viết các biểu thức sau thành đa thức:
a) \(\left( {a - 5} \right)\left( {{a^2} + 5a + 25} \right)\) b) \(\left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right)\)
a) \(\left(x-5\right)\left(a^2+5a+25\right)\)
\(=a^3-5^3\)
\(=a^3-125\)
b) \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
\(=x^3+\left(2y\right)^3\)
\(=x^3+8y^3\)
Viết mỗi biểu thức sau thành tổng 2 lập phương:
a, x^2 +10x +25 +y^2 +1+2y
b, x^2 - 2xy +2y^2 +2y +1
c, x^2 - 6x +13+y^2 +4y
d, 4x^2 +2y^2 -4xy -2y+1
a) \(x^2+10x+25+y^2+1+2y=\left(x+5\right)^2+\left(y+1\right)^2\)
b) \(x^2-2xy+2y^2+2y+1=\left(x-y\right)^2+\left(y+1\right)^2\)
c) \(x^2-6x+13+y^2+4y=\left(x-3\right)^2+\left(y+2\right)^2\)
d) \(4x^2+2y^2-4xy-2y+1=\left(2x-y\right)^2+\left(y-1\right)^2\)
3A. Tính giá trị biểu thức: a) A = (x²-3x² + 3x)² -2(x²-3x² + 3x)+1 tại x= 11; b) B=(x-2y)(x² + 2xy + 4y²)-6xy(x-2y) tai x=3;y=; 5A. Phân tích đa thức thành nhân tử a) x² +1-2x²; c) y²-4x² + 4x-1; b)x²-y²-5y+5x; d) x (2+x)²-(x+2)+1-x² 6A. Phân tích đa thức thành nhân tử: (a) x² −8x+7; b) 2x² -5x+2; c) x²-5x² +8x-4; d) x² +64.
BT8: Tính giá trị của các biểu thức sau:
\(3,C=x^2-8xy+16y^2\)tại \(x-4y=5\)
\(4,D=9x^2+1620-12xy+4y^2\)tại \(3x-2y=20\)
3, \(C=x^2-8xy+16y^2\)
\(C=x^2-2\cdot4y\cdot x+\left(4y\right)^2\)
\(C=\left(x-4y\right)^2\)
Thay \(x-4y=5\) vào C ta được:
\(C=5^2=25\)
Vậy: ......
4, \(D=9x^2+1620-12xy+4y^2\)
\(D=\left(9x^2-12xy+4y^2\right)+1620\)
\(D=\left[\left(3x\right)^2-2\cdot3x\cdot2y+\left(2y\right)^2\right]+1620\)
\(D=\left(3x-2y\right)^2+1620\)
Thay \(3x-2y=20\) vào D ta được:
\(D=20^2+1620=400+1620=2020\)
Vậy: ...
3/
\(C=x^2-8xy+16y^2=x^2-2.4.xy+\left(4y\right)^2=\left(x-4y\right)^2\)
Thay x - 4y = 5 ta có: \(C=5^2=25\)
4/
\(D=9x^2-12xy+4y^2+1620\\ =\left(3x\right)^2-3.2.2xy+\left(2y\right)^2+1620\\ =\left(3x-2y\right)^2+1620\)
Thay 3x - 2y = 20. Ta có: \(D=20^2+1620=400+1620=2020\)
Phân tích các đa thức sau thành nhân tử :
a/ \(10x\left(x-y\right)-6y\left(y-x\right)\)
b/ \(14x^2y-21xy^2+28x^3y^2\)
c/ \(x^2-4+\left(x-2\right)^2\)
d/ \(\left(x+1\right)^2-25\)
e/ \(x^2-4y^2-2x+4y\)
f/ \(x^2-25-2xy+y^2\)
g/ \(x^3-2x^2+x-xy^2\)
h/ \(x^3-4x^2-12x+27\)
i/ \(x^2+5x-6\)
m/ \(6x^2-7x+2\)
n/ \(4x^4+81\)
\(a.10x\left(x-y\right)-6y\left(y-x\right)\\ =10x\left(x-y\right)+6y\left(x-y\right)\\ =\left(10x-6y\right)\left(x-y\right)\\ =2\left(5x-3y\right)\left(x-y\right)\)
\(b.14x^2y-21xy^2+28x^3y^2\\ =7xy\left(x-y+xy\right)\)
\(c.x^2-4+\left(x-2\right)^2\\ =\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\\ =\left(x-2\right)\left(x+2+x-2\right)\\ =2x\left(x-2\right)\)
\(d.\left(x+1\right)^2-25\\ =\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)
Phân tích các đa thức sau thành nhân tử:
1) x^2 - y^2 - 2x + 2y
2) 2x + 2y - x^2 - xy
3) 3a^2 - 6ab + 3b^2 - 12c^2
4) x^2 - 25 + y^2 +2xy
5) a^2 + 2ab +b^2-ac-bc
6) x^2 - 2x - 4y^2 - 4y
7) x^2y - x^3 - 9y + 9x
8) x^2(x+1) + 16(1-x)
1)
x2-y2-2x+2y
=(x-y)(x+y)-2(x-y)
=(x-y)(x+y-2)
2)
2x+2y-x2-xy
=2(x+y)-x(x+y)
=(2-x)(x+y)
3)
3a2-6ab+3b2-12c2
=3(a2-2ab+b2)-3(4c2)
=3(a-b)2-3(4c2)
=3[(a-b)2-4c2 ]
=3(a-b-2c)(a-b+2c)
4)
x2-25+y2+2xy
=(x+y)2-25
=(x+y-5)(x+y+5)
1) x^2 - y^2 - 2x + 2y= ( x^2 - y^2) - ( 2x + 2y) = (x-y -2 ) (x+y)
2) 2x + 2y - x^2 - xy = 2 (x+y) - x(x+y) = (2-x)(x+y)
4) x^2 - 25 + y^2 +2xy = x^2 + 2xy + y^2 - 25 = (x+y)^2 - 5^2 = (x+y-5)(x+y+5)
5) a^2 + 2ab +b^2-ac-bc= (a+b)^2- ac + bc = (a+b)^2 - c(a+b) = (a+b)(a+b-c)
6) x^2 - 2x - 4y^2 - 4y = (x^2 - 4y^2) - (2x+4y) = (x - 2y)(x+2y) - 2 (x+2y) = (x-2y-2)(x+2y)
7) x^2y - x^3 - 9y + 9x = x^2 (y-x) - 9(y-x) = (x^2 - 9)(y-x)= (x^2 - 3^2)(y-x) = (x-3)(x+3)(y-x)
- Xl câu 3 , 8 t hk biết lm
Câu 1: Đa thức -2x^2y +xy + 1 đc viết thành tổng của 2 đa thức nào.
Câu 2 : Đa thức x^2y^2 + 2xy -3 đc viết thành tổng của 2 đa thức nào.
Câu 3 : Đa thức -2x^2y + xy +1 đc viết thành hiệu của 2 đa thức nào.
Câu 4 : Đa thức x^2y^2 -2xy +3 đc viết thành hiệu của 2 đa thức nào.
Câu 1:
-2x²y + xy + 1 = -2x²y + (xy + 1)
Vậy -2x²y + xy + 1 được viết thành tổng của hai đa thức: -2x²y và xy + 1
Câu 2:
x²y² + 2xy - 3 = x²y² + (2xy - 3)
Vậy x²y² + 2xy - 3 được viết thành tổng của hai đa thức: x²y² và 2xy - 3
Câu 3:
-2x²y + xy + 1 = (xy + 1) - 2x²y
Vậy -2x²y + xy + 1 được viết thành hiệu của hai đa thức: xy + 1 và 2x²y
Câu 4:
x²y² - 2xy + 3 = (x²y² + 3) - 2xy
Vậy x²y² - 2xy + 3 được viết thành hiệu của hai đa thức: x²y² + 3 và 2xy
Phân tích đa thức thành nhân tử:
a,(x+y-5)^2-2(x+y-5)+1
b,(x^2+4y^2-5)-16(x^2y^2+2xy+1)
Bài 1: Phân tích đa thức sau :
a)2x(xy+y^2-3)
b)(x-y)(2x+y)
c)(x-2y)^2
d)(2x-y)(y+2x)
bài 2: Phân tích các đơn thức thành nhân tử
a)3x^2-3xy
b)x^2-4y^2
c)3x-3y+xy-y^2
d)x^2-1+2y-y^2
Bài 3: Tìm x biết:
a)3x^2-6x=0
b)Tìm x,y thuộc z biết: x^2+4y^2-2xy=4
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)