CMR: \(\dfrac{1}{2}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+....+\dfrac{1}{2005\sqrt{2004}}< 2\)
CMR: \(\dfrac{1}{2}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+....+\dfrac{1}{2005\sqrt{2004}}< 2\)
CMR 2004 < 1+ \(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{1006009}}< 2005\)
Ta có:
\(\dfrac{1}{\sqrt{n}}=\dfrac{2}{2\sqrt{n}}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{n}}< \dfrac{2}{\sqrt{n-1}+\sqrt{n}}=2\left(\sqrt{n}-\sqrt{n-1}\right)\\\dfrac{1}{\sqrt{n}}>\dfrac{2}{\sqrt{n}+\sqrt{n+1}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\end{matrix}\right.\)
Thế vô giải tiếp
Chứng minh : \(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+...+\dfrac{1}{2005\sqrt{2004}}< 2\)
\(\frac{1}{(n+1)\sqrt{n} }=\frac{\sqrt{n} }{n(n+1)}=\sqrt{n} (\frac{1}{\sqrt{n} } -\frac{1}{\sqrt{n+1} } )(\frac{1}{\sqrt{n} } +\frac{1}{\sqrt{n+1} } )=(1+\frac{\sqrt{n} }{\sqrt{n+1} } )(\frac{1}{\sqrt{n} } -\frac{1}{\sqrt{n+1} } <2(\frac{1}{\sqrt{n} } -\frac{1}{\sqrt{n+1} } )\)
Áp dụng BĐT vừa CM ta có
A< 2(1-\(\frac{1}{\sqrt{2} } +\frac{1}{\sqrt{2} } -\frac{1}{\sqrt{3} } +...+\frac{1}{\sqrt{n} } -\frac{1}{\sqrt{n+1} } \))<2(đpcm)
Chứng minh:
\(\dfrac{1}{1\sqrt{2}}+\dfrac{1}{2\sqrt{3}}+....+\dfrac{1}{2004\sqrt{2005}}< 2\)
Chứng minh rằng : \(\dfrac{1}{2}\)+\(\dfrac{1}{3\sqrt{2}}\)+\(\dfrac{1}{4\sqrt{3}}\)+...+\(\dfrac{1}{2005\sqrt{2004}}\)
Chứng minh biểu thức đó <2
Với mọi \(n\in N^{\cdot}\), ta có
\(\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)
\(\Leftrightarrow1< 2\left(n+1\right).\sqrt{n}\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)
\(\Leftrightarrow0< n+1-2\sqrt{n+1}.\sqrt{n}+n\)
\(\Leftrightarrow0< \left(\sqrt{n+1}-\sqrt{n}\right)^2\)(Luôn đúng vì n thuộc N*)
Do đó: \(\dfrac{1}{2}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+...\dfrac{1}{2005\sqrt{2004}}< 2\left(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2004}}-\dfrac{1}{\sqrt{2005}}\right)\)
\(=2\left(1-\dfrac{1}{\sqrt{2005}}\right)< 2\)
Rút gọn:
a) \(A=\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+\dfrac{1}{\sqrt{7}+\sqrt{9}}+... +\dfrac{1}{\sqrt{97}+\sqrt{99}}\)
b) \(B=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2006\sqrt{2005}+2005\sqrt{2006}}+\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}\)
\(b,\) Ta có:
\(\dfrac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}\\ =\dfrac{1}{\sqrt{n}.\sqrt{n-1}\left(\sqrt{n}+\sqrt{n-1}\right)}\\ =\dfrac{\sqrt{n}}{\sqrt{n}.\sqrt{n-1}}-\dfrac{\sqrt{n-1}}{\sqrt{n}.\sqrt{n-1}}\\ =\dfrac{1}{\sqrt{n-1}}-\dfrac{1}{\sqrt{n}}\)
Thay:
\(n=2\) \(\Leftrightarrow\dfrac{1}{2\sqrt{1}+1\sqrt{2}}=\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}\)
\(n=3\Leftrightarrow\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\)
\(...\)
\(n=2007\Leftrightarrow\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}=\dfrac{1}{\sqrt{2006}}-\dfrac{1}{\sqrt{2007}}\\ \)
Tiếp phần b ( do máy lag) :3
Cộng 2 vế với nhau, ta có:
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}\\ =1-\dfrac{1}{\sqrt{2007}}\)
a) A=\(\dfrac{1}{\sqrt{3}+\sqrt{5}}\)+\(\dfrac{1}{\sqrt{5}+\sqrt{7}}\)+\(\dfrac{1}{\sqrt{7}+\sqrt{9}}\)+...+\(\dfrac{1}{\sqrt{97}+\sqrt{99}}\)
=\(\dfrac{\sqrt{5}-\sqrt{3}}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)}\)+\(\dfrac{\sqrt{7}-\sqrt{5}}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)}\)+\(\dfrac{\sqrt{9}-\sqrt{7}}{\left(\sqrt{7}+\sqrt{9}\right)\left(\sqrt{9}-\sqrt{7}\right)}\)+...+\(\dfrac{\sqrt{99}-\sqrt{97}}{\left(\sqrt{99}+\sqrt{97}\right)\left(\sqrt{99}-\sqrt{97}\right)}\)
=\(\dfrac{\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+\sqrt{9}-\sqrt{7}+...+\sqrt{99}-\sqrt{97}}{2}\)
=\(\dfrac{\sqrt{99}-\sqrt{3}}{2}\)
vậy A=\(\dfrac{\sqrt{99}-\sqrt{3}}{2}\)
CMR: \(\dfrac{1}{1\sqrt{2}}+\dfrac{1}{2\sqrt{3}}+\dfrac{1}{3\sqrt{4}}+...+\dfrac{1}{n\sqrt{n+1}}>2\) với n ϵ N*
CMR:
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{3}}+....+\dfrac{1}{\left(n+1\right)\left(\sqrt{n}+n\sqrt{n+1}\right)}< 1\)
CMR: \(A=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2016^2}+\dfrac{1}{2017^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\)là 1 số hữu tỉ
Ta chứng minh được công thức \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{a+b}\)
\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\sqrt{\dfrac{a^4+2a^3b+a^2b^2+2ab^3+b^4}{a^2b^2\left(a+b\right)^2}}\)
\(=\sqrt{\left(\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\right)^2}=\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\)
\(=\dfrac{1}{b}+\dfrac{1}{a}-\dfrac{1}{a+b}\)
\(A=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2016^2}+\dfrac{1}{2017^2}}+\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\)
\(=\dfrac{1}{1}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{1}+\dfrac{1}{3}-\dfrac{1}{4}+1+\dfrac{1}{2016}-\dfrac{1}{2017}+1+\dfrac{1}{2017}-\dfrac{1}{2018}\)
=>A là số hữu tỉ (ĐPCM)