Chứng minh đẳng thức:
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2010\sqrt{2009}+2009\sqrt{2010}}=1-\dfrac{\sqrt{2010}}{2010}\)
Chứng minh rằng:
\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{79}+\sqrt{80}}>4\)
Chứng minh rằng:
\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{79}+\sqrt{80}}>4\)
1. \(\dfrac{-2}{\sqrt{3}-1}\)
2. \(\dfrac{5}{1-\sqrt{6}}\)
3. \(\dfrac{2+\sqrt{5}}{2-\sqrt{5}}\)
4. \(\dfrac{1}{5+2\sqrt{6}}\)
5. \(\dfrac{\sqrt{5}+2}{\sqrt{5}-2}\)
6. \(\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{2}-\sqrt{5}}\)
7. \(\dfrac{\sqrt{20}-3\sqrt{10}}{3-\sqrt{2}}\)
8. \(\dfrac{6-2\sqrt{5}}{3+\sqrt{5}}\)
9. \(\dfrac{9+4\sqrt{5}}{\sqrt{5}+2}\)
Rút gọn
\(A=\dfrac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(B=\dfrac{1}{\sqrt{1}-\sqrt{2}}+\dfrac{1}{\sqrt{2}-\sqrt{3}}+....+\dfrac{1}{\sqrt{n-1}-\sqrt{n}}\) (n thuộc N, n>=2)
Rút gọn :
\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-\dfrac{1}{\sqrt{4}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{6}}-\dfrac{1}{\sqrt{6}-\sqrt{7}}+\dfrac{1}{\sqrt{7}-\sqrt{8}}-\dfrac{1}{\sqrt{8}-\sqrt{9}}\)
1 Đúng hoặc Sai,nếu sai thì sửa lại cho đúng
a/\(\dfrac{5}{2\sqrt{5}}=\dfrac{\sqrt{5}}{2}\) ; b/\(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{10}\) ; c/\(\dfrac{2}{\sqrt{3}-1}=\sqrt{3}-1\) ; d/\(\dfrac{8}{2\sqrt{8}-1}=\dfrac{P\left(2\sqrt{8}+1\right)}{4P-1}\) ; e/\(\dfrac{1}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\)
2 Rút gọn các biểu thức
a/\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}\) ; b/\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\) ; c/\(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\) ; d/\(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}+\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}}\)
Bài 1: Tính:
\(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
Bài 2: Rút gọn rồi tính:
a) A=\(\dfrac{a^4-4a^2+3}{a^4-12a^2+27},a=\sqrt{3}-\sqrt{2}\)
b) \(B=\dfrac{1}{\sqrt{h+2\sqrt{h-1}}}+\dfrac{1}{\sqrt{h-2\sqrt{h-1}}},h=3\)
c) \(C=\dfrac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}x+2},x=2\left(\sqrt{3}+1\right)\)
d) \(D=\left(\dfrac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{3}{\sqrt{1-a^2}}+1\right),a=\dfrac{\sqrt{3}}{2+\sqrt{3}}\)
Mọi người giúp em với!!!!!!!!!!!!!!
Bài 1: CM với mọi số nguyên dương n thì \(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+.....+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Bài 2: CM với mọi số tự nhiên n>=2 đều có \(\sqrt{n}< \dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+.....+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}\)