Cho tam giác ABC vuông tại A có AH là đường cao CH=12, BH=4. Tính ABC^
Cho tam giác ABC vuông tại A có AH là đường cao, AH=6, CH-BH=9. Tính BH, CH
Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông:
$BH.CH=AH^2=36(*)$
Mà $CH-BH=9\Rightarrow CH=BH+9$. Thay vô $(*)$ thì:
$BH(BH+9)=36$
$\Leftrightarrow BH^2+9BH-36=0$
$\Leftrightarrow (BH-3)(BH+12)=0$
Vì $BH>0$ nên $BH=3$
$CH=BH+9=3+9=12$
1. Cho tam giác ABC vuông tại A, biết AH = 16, BH = 9. Tính AB.
2. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Tính độ dài HB.
3. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12, BC = 15. Tính HC.
4. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 6, HC = 9. Tính độ dài AC.
5. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 16cm. Tính AH
6. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 8cm, HC = 12 cm. Tính AC.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
cho tam giác ABC vuông tại A , đường cao AH,có AH=4,BH/CH=1/2.Tính BC
có:\(\dfrac{BH}{CH}=\dfrac{1}{2}=>CH=2BH\)
có tam giác ABC vuông tại A đường cao AH
=>\(AH^2=BH.CH\)(hệ thức lượng)
<=>\(BH=\dfrac{AH^2}{CH}=\dfrac{AH^2}{2BH}\)<=>\(BH=\dfrac{4^2}{2BH}=>3BH=16< =>BH=\dfrac{16}{3}\)
=>\(CH=\dfrac{2.16}{3}=\dfrac{32}{3}\)
=>\(BC=BH+CH=\dfrac{32}{3}+\dfrac{16}{3}=16\)
Cho tam giác ABC vuông tại A có AH là đường cao biết AH=4 CH=2 . Tính BH,AB .mình cần gấp ạ
Áp dụng HTL:
\(\left\{{}\begin{matrix}AH^2=BH\cdot HC\\AB^2=BH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{HC}=8\left(cm\right)\\AB^2=8\left(8+2\right)=80\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=8\left(cm\right)\\AB=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)
1.Cho tam giác ABC vuông tại A. Gọi H là chân đường cao hạ từ A. Biết rằng AB = 7cm, AC = 9cm. Tính BH, CH, AH.
2. Cho tam giác ABC vuông tại A, đường cao AH. BH = 4cm, CH=9cm. Tính AH,AB,AC?
BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6
\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)
\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)
Bài 1:Cho tam giác ABC vuông tại A,đường cao AH.Biết AB=15,AC=20,tính các đoạn thẳng AH,BH,CH,BC
Bài 2:Cho tam giác ABC vuông tại A,đường cao AH=12,cạnh huyền BC=25
a)tính BH
b)Tính AB,AC
Bài 3:Cho tam giác ABC,đường cao AH \(\perp\)BC.Biết AB=6,CH=6,4
a)Tính BH
b)Tính AC.
Hình vẽ chung cho cả ba bài.
Bài 1:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)
\(\Rightarrow AH^2=144\Rightarrow AH=12\)
\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)
\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)
\(\Rightarrow BC=BH+CH=9+16=25\)
Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.
Bài 2: Bài giải
Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)
Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)
\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)
Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
Nếu BH = 16 cm thì CH = 9 cm
\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
bạn cho mình hỏi tại sao AH2 =BH.HC??
Tui đag cần gấp mg mn giúp đỡ ạ ! Câu1 Cho tam giác ABC vuông tại A, đường cao AH a)Cho AH bằng 16,BH bằng 25 . Tính AB,AC,BC,CH b)Cho AB bằng 12,BH bằng 6.Tính AH,AC,BC,CH Câu 2 Cho tam giác ABC vuông tại A.Biết rằng AB/AC=5/6 đường cao AH=30cm. Tính HB và HC
Câu 2:
AB/AC=5/6
=>HB/HC=25/36
=>HB/25=HC/36=k
=>HB=25k; HC=36k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>900k^2=900
=>k=1
=>HB=25cm; HC=36cm
Bài 1: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AH=24 cm và HC=18 cm. Tính: BH, ,BC,AC,AB và diện tích tam giác ABC Bài 2: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB= 12 cm và BC=20 cm. Tính: BH, ,AC,HC,AH và diện tích tam giác ABC Bài 3: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=3 cm và AC=4 cm. Tính: BH, ,BC,HC,AH và diện tích tam giác ABC Bài 4: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AC=15 cm và AH =12 cm. Tính: BH, ,BC,AB,AH và diện tích tam giác ABC Bài 5:Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=20 cm và HC=9cm. Tính: BH, ,BC,AC,AH và diện tích tam giác ABC
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A có BC = 5 cm, đường cao AH = 12/5 cm. Tính BH, CH.
Ta có \(\Delta HBA\approx\Delta HAC\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\)
=> HB.HC = HA2
=> 2HB.HC = \(\frac{288}{25}\)
mà HB + HC = BC = 5 (1)
=> HB2 + HC2 + 2HB.HC = 25
<=> HB2 + HC2 - 2.HB.HC = 1,96
<=> HB - HC = 1,4 (2)
Từ (1) và (2) => HB = 3,2 ; HC = 1,8
Mình hỏi tý nè :
Sao cái tam giác ABC vuông tại A rồi thì AB là chiều cao chứ ạ. Hì hì mình nói có gì sai mọi người bảo mình nha.