Thực hiện phép tính :
\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
Thực hiện phép tính và thu gọn biểu thức:
B= \(\left(\dfrac{4}{1-\sqrt{5}}+\dfrac{1}{2+\sqrt{5}}-\dfrac{4}{3-\sqrt{5}}\right)\left(\sqrt{5}-6\right)\)
Thực hiện phép tính:
\(\sqrt{48}-\dfrac{\sqrt{21}-\sqrt{15}}{\sqrt{7}-\sqrt{5}}+\dfrac{2}{\sqrt{3}+1}\)
\(B=\left(\dfrac{4}{1-\sqrt{5}}+\dfrac{1}{2+\sqrt{5}}-\dfrac{4}{3-\sqrt{5}}\right)\left(\sqrt{5}-6\right)\)
\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}+\dfrac{2-\sqrt{5}}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}-\dfrac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\right]\left(\sqrt{5}-6\right)\)
\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{1-5}+\dfrac{2-\sqrt{5}}{4-5}-\dfrac{4\left(3+\sqrt{5}\right)}{9-5}\right]\left(\sqrt{5}-6\right)\)
\(B=\left[-\dfrac{4\left(1+\sqrt{5}\right)}{4}-\dfrac{2-\sqrt{5}}{1}-\dfrac{4\left(3+\sqrt{5}\right)}{4}\right]\left(\sqrt{5}-6\right)\)
\(B=\left(-1-\sqrt{5}-2+\sqrt{5}-3-\sqrt{5}\right)\left(\sqrt{5}-6\right)\)
\(B=\left(-\sqrt{5}-6\right)\left(\sqrt{5}-6\right)\)
\(B=-\left(\sqrt{5}+6\right)\left(\sqrt{5}-6\right)\)
\(B=-\left(5-36\right)\)
\(B=-\left(-31\right)\)
\(B=31\)
_____________________________
\(\sqrt{48}-\dfrac{\sqrt{21}-\sqrt{15}}{\sqrt{7}-\sqrt{5}}+\dfrac{2}{\sqrt{3}+1}\)
\(=4\sqrt{3}-\dfrac{\sqrt{3}\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{7}-\sqrt{5}}+\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=4\sqrt{3}-\sqrt{3}-\dfrac{2\left(\sqrt{3}-1\right)}{2}\)
\(=3\sqrt{3}-\sqrt{3}+1\)
\(=2\sqrt{3}+1\)
Thực hiện phép tính
a) (\(2\sqrt{3}-\sqrt{2}\))2+\(2\sqrt{24}\)
b) \(\left(3\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+2\sqrt{3}\right)-\sqrt{60}\)
\(a,\left(2\sqrt{3}-\sqrt{2}\right)^2+2\sqrt{24}=\left[\left(2\sqrt{3}\right)^2-2.2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2\right]+2\sqrt{24}\\ =\left[12-4\sqrt{6}+2\right]+2\sqrt{24}=14-4\sqrt{6}+4\sqrt{6}=14\\ b,\left(3\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+2\sqrt{3}\right)-\sqrt{60}=3\sqrt{5}.\sqrt{5}-2\sqrt{3}.\sqrt{3}+3\sqrt{5}.2\sqrt{3}-\sqrt{3}.\sqrt{5}-\sqrt{60}\\ =15-6+6\sqrt{15}-\sqrt{15}-\sqrt{2^2.15}\\ =9+3\sqrt{15}\)
thực hiện phép tính
A=\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
B=\(\sqrt{\dfrac{3-\sqrt{5}}{\sqrt{10}+\sqrt{2}}}\cdot\left(3+\sqrt{5}\right)\)
a) \(A=\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(=\dfrac{2-\sqrt{3}}{1}+\dfrac{2+\sqrt{3}}{1}\)
=4
Thực hiện phép tính
a) \(\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(1+\sqrt{5}\right)^2}\)
b) \(\dfrac{3-5\sqrt{3}}{\sqrt{3}-5}+6\sqrt{\dfrac{4}{3}}\)
\(a,\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(1+\sqrt{5}\right)^2}\)
\(=\left|2-\sqrt{5}\right|-\left|1+\sqrt{5}\right|\)
\(=\sqrt{5}-2-\left(1+\sqrt{5}\right)\)
\(=\sqrt{5}-2-1-\sqrt{5}\)
\(=-3\)
\(b,\dfrac{3-5\sqrt{3}}{\sqrt{3}-5}+6\sqrt{\dfrac{4}{3}}\)
\(=\dfrac{\sqrt{3}\left(\sqrt{3}-5\right)}{\sqrt{3}-5}+6\cdot\dfrac{\sqrt{4}}{\sqrt{3}}\)
\(=\sqrt{3}+\dfrac{12}{\sqrt{3}}\)
\(=\sqrt{3}+\dfrac{12\sqrt{3}}{3}\)
\(=\sqrt{3}+4\sqrt{3}\)
\(=5\sqrt{3}\)
#\(Toru\)
\(\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(1+\sqrt{5}\right)^2}\\ =\left|2-\sqrt{5}\right|-\left|1+\sqrt{5}\right|\\ =\sqrt{5}-2-1-\sqrt{5}\\ =-2-1\\ =-3\)
\(\dfrac{3-5\sqrt{3}}{\sqrt{3}-5}+6\sqrt{\dfrac{4}{3}}\\ =\dfrac{\sqrt{3}\left(\sqrt{3}-5\right)}{\sqrt{3}-5}+4\sqrt{3}\\ =\sqrt{3}+4\sqrt{3}\\ =5\sqrt{3}\)
thực hiện phép tính
\(\sqrt{12}+5\sqrt{3}-\sqrt{48}\)
\(\left(\sqrt{6}-\sqrt{5}\right)^2+\sqrt{120}\)
Thực hiện phép tính
\(\dfrac{1}{2-\sqrt{5}}-\dfrac{4}{3+\sqrt{5}}+\sqrt{\left(\sqrt{5}-3\right)^2}\)
Thực hiện phép tính :
A = \(\frac{\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}+2-\sqrt{2}}\)
thực hiện phép tính
\(\sqrt{2-\sqrt{3}}\left(\sqrt{5}+\sqrt{2}\right)\)
`\sqrt(2-\sqrt3) (\sqrt5 +\sqrt2)`
`=\sqrt(5(2-\sqrt3)) + \sqrt(2(2-\sqrt3))`
`=\sqrt(10-5\sqrt3)+\sqrt(4-2\sqrt3)`
\(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{5}+\sqrt{2}\right)\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{2}}\)
\(=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{2}}\)
\(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}}+1}-\sqrt{3-2\sqrt{2}}\\ \).Thực hiện phép tính sau
Đặt: \(A=\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\)
=> \(A^2=\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\)
=> \(A^2=2\sqrt{5}+2\sqrt{5-4}\)
=> \(A^2=2\sqrt{5}+2\)
=> \(A^2=2\left(\sqrt{5}+1\right)\)
=> \(A=\sqrt{2\left(\sqrt{5}+1\right)}\)
=> \(\frac{A}{\sqrt{\sqrt{5}+1}}=\frac{\sqrt{2\left(\sqrt{5}+1\right)}}{\sqrt{\sqrt{5}+1}}=\sqrt{2}\)
Đặt: \(B=\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\)
=> \(VT=\frac{A}{\sqrt{\sqrt{5}+1}}-B=\sqrt{2}-\left(\sqrt{2}-1\right)=\sqrt{2}-\sqrt{2}+1=1\)
VẬY KẾT QUẢ CỦA PHÉP TÍNH = 1.