phân tích đa thức thành nhân tử
(x^2+4x-3)^2-5x.(x^2+4x-3)+6x^2
phân tích đa thức thành nhân tử :
x^3 - 3x^2 - 4x +12
\(x^3-3x^2-4x+12\)
\(=x^2\left(x-3\right)-\left(4x-12\right)\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x^2-4\right)\left(x-3\right)\)
\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
\(x^3-3x^2-4x+12\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x^2-4\right)\left(x-3\right)\)
\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
Phân tích đa thức sau thành nhân tử
x2-4x+3
\(x^2-4x+3\)
\(=x^2-x-3x+3\)
\(=x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(x-1\right)\left(x-3\right)\)
x2-4x+3
=x.x-x-3x-3
=x.(x-1)-3.(x-1)
=(x-1)(x-3)
x2 - 4x + 3
= x2 - x - 3x + 3 ( dùng phương pháp tách nhân tử )
= ( x2 - x ) - ( 3x - 3 ) ( vì đằng trc có đấu " - " nên ta đổi đáu trong ngoặc )
= x( x - 1 ) - 3(x - 1 ) ( đặt nhân tử chung )
= ( x - 1 ) ( x - 3 )
hok tốt !
Phân tích đa thức thành nhân tử : (x2 + x)2 + 4x2 + 4x – 12
\(\left(x^2+x\right)^2+4x^2+4x-12=\left[\left(x^2+x\right)^2+4\left(x^2+x\right)+4\right]-16=\left(x^2+x+2\right)-4^2=\left(x^2+x+2-4\right)\left(x^2+x+2+4\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
\(\left(x^2+x\right)^2+4x^2+4x-12\\ =\left(x^2+x+2\right)-4\\ =\left(x^2+x-2\right)\left(x^2+x+6\right)\)
\(\left(x^2+x\right)^2+4x^2+4x-12\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)
phân tích đa thức thành nhân tử:
a, x2+5+6
b, x2-4x+3
c, x2+5x+4
d, x2-x-6
a) \(x^2+5x+6=x^2+2x+3x+6=x\left(x+2\right)+3\left(x+2\right)=\left(x+3\right)\left(x+2\right)\)
b) \(x^2-4x+3=x^2-x-3x+3=x\left(x-1\right)-3\left(x-1\right)=\left(x-3\right)\left(x-1\right)\)
c) \(x^2+5x+4=x^2+x+4x+4=x\left(x+1\right)+4\left(x+1\right)=\left(x+4\right)\left(x+1\right)\)
d) \(x^2-x-6=x^2+2x-3x-6=x\left(x+2\right)-3\left(x+2\right)=\left(x-3\right)\left(x+2\right)\)
phân tích đa thức thành nhân tử:
4x+5xy-6x+9x2
4x+5xy-6x+9x2=9x2-2x+5xy=x(9x-2+5y)
hình như đề sai rồi
Phân tích đa thức thành nhân tử : 4x^2 - 9y^2 + 4x - 6y
\(4x^2-9y^2+4x-6y=\left(4x^2-9y^2\right)+\left(4x-6y\right)=\left(2x-3y\right)\left(2x+3y\right)+2\left(2x-3y\right)=\left(2x-3y\right)\left(2x+3y+2\right)\)
\(4x^2-9y^2+4x-6y\)
\(=\left(2x-3y\right)\left(2x+3y\right)+2\left(2x-3y\right)\)
\(=\left(2x-3y\right)\left(2x+3y+2\right)\)
Phân tích đa thức thành nhân tử : (4x + 1)(12x – 1)(3x + 2)(x + 1) – 4
Ta có: \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
\(=\left(12x^2+8x+3x+2\right)\left(12x^2+12x-x-1\right)-4\)
\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
\(=\left(12x^2+11x\right)^2+\left(12x^2+11x\right)-6\)
\(=\left(12x^2+11x+3\right)\left(12x^2+11x-2\right)\)
phân tích đa thức thành nhân tử
a/ (x^2+x-1)^2+4x^2+4x
b/(x^2+y^2-17)^2-4(x.y - 4)^2
a/ \(=x^4+x^2+1+2x^3+2x+2x^2=\left(x^2+x+1\right)^2\)
b/ \(=y^4+\left(-2x^2-34\right)y^2+32xy+x^4-34x^2+225\)
câu này bn coi lại đc k , mk k lm ra
a) (1,0 điểm) 4x^2 + 8x.
b) (1,0 điểm) x^2 – 9 .
c) (1,0 điểm) 2x^3 – 3x^2 + 2x – 3.
phân tích đa thức thành nhân tử, trình bày ra luôn
\(a,=4x\left(x+2\right)\\ b,=\left(x-3\right)\left(x+3\right)\\ c,=x^2\left(2x-3\right)+\left(2x-3\right)=\left(2x-3\right)\left(x^2+1\right)\)
a)4x2+8x b)x2-9
=4x(x+2) =x2-32
=(x-3)(x+3)
c)2x3-3x2+2x-3
=2x3+2x-(3x2+3)
=2x(x2+1)-3(x2+1)
=(2x-3)(x2+1)