Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tú Hà
Xem chi tiết
Dang Tung
22 tháng 6 2023 lúc 9:59

Vì : \(\left(2x-5\right)^{2022}\ge0\forall x,\left(3y+4\right)^{2024}\ge0\forall y\\ =>\left(2x-5\right)^{2022}+\left(3y+4\right)^{2024}\ge0\)

Do đó đề bài xảy ra khi và chỉ khi :

\(\left\{{}\begin{matrix}\left(2x-5\right)^{2022}=0\\\left(3y+4\right)^{2024}=0\end{matrix}\right.\\ =>\left(x;y\right)=\left(\dfrac{5}{2};-\dfrac{4}{3}\right)\)

Nguyễn Tú Hà
22 tháng 6 2023 lúc 10:35

Mình ko biết cách để làm ra đc kết quả này, có thể giải thích cụ thể hơn ko ạ?

Alex Dương
Xem chi tiết
Kiều Vũ Linh
21 tháng 12 2023 lúc 6:54

Em xem lại số mũ của 2x - 5y nhé

2023 hay 2024?

Lê Thị Phương Uyên
Xem chi tiết
HT.Phong (9A5)
8 tháng 1 2024 lúc 19:18

\(\left(2x+4\right)^{2024}+\left(\left|3y-9\right|\right)^{2023}=0\) (*) 

Ta có: \(\left(2x+4\right)^{2024}\ge0\forall x\) (vì có số mũ chẵn) (1)

\(\left(\left|3y-9\right|\right)^{2023}\ge0\forall y\) (vì giá trị tuyệt đối luôn ≥0) (2) 

Từ (1) và (2) ta có: 

\(\Rightarrow\left\{{}\begin{matrix}2x+4=0\\3y-9=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)

Vậy: ... 

piojoi
Xem chi tiết
Vui lòng để tên hiển thị
25 tháng 7 2023 lúc 13:03

Vì `{(|x - 3y|^2023 >=0), (|y+4|^2024 >=0):} forall x, y`

Nên `{(x=3y), (y = -4):}`

`<=> {(x=-12), (y=-4):}`

Nguyễn Lê Phước Thịnh
25 tháng 7 2023 lúc 12:52

=>x-3y=0 và y+4=0

=>y=-4 và x=3y=-12

Lê Nguyễn Phương Uyên
25 tháng 7 2023 lúc 13:07

 |x-3y|^2023 + |y+4|^2024 = 0 

⇒|x-3y| = 0 và |y+4| = 0

⇒x- 3y=0     và    y+4 = 0

                            y     = -4

Vậy, nghiệm của phương trình |x-3y|^2023 + |y+4|^2024 = 0 là x - 3y = 0 và y = -4.

Nguyễn Tú Hà
Xem chi tiết

a,Nghiệm của (2\(x\) - 5)2022 là giá trị của \(x\) thỏa mãn

  (2\(x\) - 5)2022 = 0

   2\(x\) -  5 = 0

  2\(x\)        = 5

  2\(x\)       = 5:2

   \(x\)        = 2,5

b, Nghiệm của (3\(x\) + 4)2024 là giá trị của \(x\) thỏa mãn:

(3\(x\) + 4)2024 = 0

    3\(x\) + 4 = 0

    3\(x\)       = -4

   \(x\)       = - 4 : 3

   \(x\) = -\(\dfrac{4}{3}\)

Đinh Thu Huyền
Xem chi tiết
Phùng Minh Phúc
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 3 2022 lúc 21:21

A là giao điểm AB và AC nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}2x+y-5=0\\x-3y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(2;1\right)\)

\(d\left(A;...\right)=\dfrac{\left|7.2-8.1+26\right|}{\sqrt{7^2+\left(-8\right)^2}}=\dfrac{32}{\sqrt{113}}\)

Phương Nguyễn Hà
Xem chi tiết
Nguyễn Thị Thương Hoài
17 tháng 12 2023 lúc 13:38

a,  7\(x\).(2\(x\) + 10) = 0

        \(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)

         \(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)

         \(\left[{}\begin{matrix}x=0\\x=-10:2\end{matrix}\right.\)

         \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy \(x\in\){-5; 0}

          

         

Nguyễn Thị Thương Hoài
17 tháng 12 2023 lúc 13:41

b, - 9\(x\) : (2\(x\) - 10) = 0

      - 9\(x\) = 0

           \(x\) = 0

c, (4 - \(x\)).(\(x\) + 3) = 0

    \(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

Vậy \(x\in\) {-3; 4}

d, (\(x\) + 2023).(\(x\) - 2024) = 0

    \(\left[{}\begin{matrix}x+2023=0\\x-2024=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=-2023\\x=2024\end{matrix}\right.\)

Vậy \(x\) \(\in\) {-2023; 2024}

Nguyễnn Linhh
Xem chi tiết
Nguyễn Thị Bích Thủy
25 tháng 1 2018 lúc 19:11

\(a\text{) }\left|2x-5\right|+\left|3y+1\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|2x-5\right|=0\\\left|3y+1\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(\left|3x-4\right|+\left|3y-5\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x-4\right|=0\\\left|3y-5\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y-5=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=4\\3y=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{5}{3}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{5}{3}\end{matrix}\right.\)
c) \(\left|2x-5\right|+\left|xy-3y+2\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|2x-5\right|=0\\\left|xy-3y+2\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\xy-3y+2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=5\\xy-3y=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\xy-3y=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\\dfrac{5}{2}y-3y=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\\left(\dfrac{5}{2}-3\right)y=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\\left(-\dfrac{1}{2}\right)y=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=\dfrac{5}{2}\\\left(-\dfrac{1}{2}\right)y=-2\end{matrix}\right.\)