Phân tích thành nhân tử
\(x^2 +4x+3\)
\(2x^2 +3x-5\)
\(16x-5x^2 -3\)
Phân tích thành nhân tử
a) x^2+5x-6
b) 5x^2+5xy-x-y
c) 7x-6x^2-2
d) x^2+4x+3
e) 2x^2+3x-5
f) 16x-5x^2-3
giải chi tiết
nhiều quá, các bn ngại làm, chia nhỏ ra,mk làm cho 2 câu
a) x2 +5x -6 = x2 -x +x + 5x -6
= x2 -x +6x -6
= x( x-1) + 6(x-1) = (x-1)(x+6)
b) 5x2 +5xy -x-y = 5x(x+y) -(x+y)
= (x+y)(5x-1)
e) \(2x^2+3x-5\)
\(=2x^2+5x-2x-5\)
\(=x\cdot\left(2x+5\right)-\left(2x+5\right)\)
\(=\left(x-1\right)\left(2x+5\right)\)
f) \(16x-5x^2-3\)
\(=-5x^2+16x-3\)
\(=-5x^2+15+x-3\)
\(=-5\cdot\left(x-3\right)+x-3\)
\(=\left(-5x+1\right)\left(x-3\right)\)
c)7x-\(6x^2\)-2
=3x + 4x - \(6x^2\) - 2
=(3x - \(6x^2\)) - (2 - 4x)
= 3x(1 - 2x) - 2(1 - 2x)
=(1-2x)(3x-2)
Bài 1 : Phân tích đa thức thành nhân tử
a) 5x^2y-20xy^2
b) 1-8x+16x^2-y^2
c) 4x-4-x^2
d) x^3-2x^2+x-xy^2
e)27-3x^2
f) 2x^2+4x+2-2y^2
Bài 2: tìm x, biết
a) x^2(x-2023)-2023+x=0
b) -x(x-4)+(2x^3-4x^2-9x):x=0
c) x^2+2x-3x-6=0
d) 3x(x-10)-2x+20=0
Bài 1
a) 5x²y - 20xy²
= 5xy(x - 4y)
b) 1 - 8x + 16x² - y²
= (1 - 8x + 16x²) - y²
= (1 - 4x)² - y²
= (1 - 4x - y)(1 - 4x + y)
c) 4x - 4 - x²
= -(x² - 4x + 4)
= -(x - 2)²
d) x³ - 2x² + x - xy²
= x(x² - 2x + 1 - y²)
= x[(x² - 2x+ 1) - y²]
= x[(x - 1)² - y²]
= x(x - 1 - y)(x - 1 + y)
= x(x - y - 1)(x + y - 1)
e) 27 - 3x²
= 3(9 - x²)
= 3(3 - x)(3 + x)
f) 2x² + 4x + 2 - 2y²
= 2(x² + 2x + 1 - y²)
= 2[(x² + 2x + 1) - y²]
= 2[(x + 1)² - y²]
= 2(x + 1 - y)(x + 1 + y)
= 2(x - y + 1)(x + y + 1)
Bài 2:
a: \(x^2\left(x-2023\right)+x-2023=0\)
=>\(\left(x-2023\right)\left(x^2+1\right)=0\)
mà \(x^2+1>=1>0\forall x\)
nên x-2023=0
=>x=2023
b:
ĐKXĐ: x<>0
\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)
=>\(-x\left(x-4\right)+2x^2-4x-9=0\)
=>\(-x^2+4x+2x^2-4x-9=0\)
=>\(x^2-9=0\)
=>(x-3)(x+3)=0
=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
c: \(x^2+2x-3x-6=0\)
=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)
=>\(x\left(x+2\right)-3\left(x+2\right)=0\)
=>(x+2)(x-3)=0
=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
d: 3x(x-10)-2x+20=0
=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)
=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)
=>\(\left(x-10\right)\left(3x-2\right)=0\)
=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)
Câu 1:
a: \(5x^2y-20xy^2\)
\(=5xy\cdot x-5xy\cdot4y\)
\(=5xy\left(x-4y\right)\)
b: \(1-8x+16x^2-y^2\)
\(=\left(16x^2-8x+1\right)-y^2\)
\(=\left(4x-1\right)^2-y^2\)
\(=\left(4x-1-y\right)\left(4x-1+y\right)\)
c: \(4x-4-x^2\)
\(=-\left(x^2-4x+4\right)\)
\(=-\left(x-2\right)^2\)
d: \(x^3-2x^2+x-xy^2\)
\(=x\left(x^2-2x+1-y^2\right)\)
\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)
\(=x\left[\left(x-1\right)^2-y^2\right]\)
\(=x\left(x-1-y\right)\left(x-1+y\right)\)
e: \(27-3x^2\)
\(=3\left(9-x^2\right)\)
\(=3\left(3-x\right)\left(3+x\right)\)
f: \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x+1+y\right)\left(x+1-y\right)\)
Bài 2
a) x²(x - 2023) - 2023 + x = 0
x²(x - 2023) - (x - 2023) = 0
(x - 2023)(x² - 1) = 0
x - 2023 = 0 hoặc x² - 1 = 0
*) x - 2023 = 0
x = 2023
*) x² - 1 = 0
x² = 1
x = 1 hoặc x = -1
Vậy x = -1; x = 1; x = 2023
b) -x(x - 4) + (2x³ - 4x² - 9x) : x = 0
-x² + 4x + 2x² - 4x - 9 = 0
x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
Vậy x = 3; x = -3
c) x² + 2x - 3x - 6 = 0
(x² + 2x) - (3x + 6) = 0
x(x + 2) - 3(x + 2) = 0
(x + 2)(x - 3) = 0
x + 2 = 0 hoặc x - 3 = 0
*) x + 2 = 0
x = -2
*) x - 3 = 0
x = 3
Vậy x = -2; x = 3
d) 3x(x - 10) - 2x + 20 = 0
3x(x - 10) - (2x - 20) = 0
3x(x - 10) - 2(x - 10) = 0
(x - 10)(3x - 2) = 0
x - 10 = 0 hoặc 3x - 2 = 0
*) x - 10 = 0
x = 10
*) 3x - 2 = 0
3x = 2
x = 2/3
Vậy x = 2/3; x = 10
Phân tích thành nhân tử :
a) \(x^2+4x+3\)
b) \(2x^2+3x-5\)
c) \(16x-5x^2-3\)
a,\(x^2+4x+3\)
=\(x^2+3x+x+3\)
=\(x\left(x+3\right)+\left(x+3\right)\)
=(x+3)(x+1)
b,\(2x^2+3x-5\)
=\(2x^2+5x-2x-5\)
=x(2x+5)-(2x+5)
=(2x+5)(x-1)
c,\(16x-5x^2-3\)
=\(-\left(5x^2-16x+3\right)\)
=\(-\left(5x^2-x-15x+3\right)\)
=-[x(5x-1)-3(5x-1)]
=-[(5x-1)(x-3)]
=-(5x-1)(x-3)
\(a.\) \(x^2+4x+3\)
\(=x^2+x+3x+3\)
\(=x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+3\right)\left(x+1\right)\)
\(b.\) \(2x^2+3x-5\)
\(=2x^2-2x+5x-5\)
\(=2x\left(x-1\right)+5\left(x-1\right)\)
\(=\left(x-1\right)\left(2x+5\right)\)
\(c.\)\(16x-5x^2-3\)
\(=-5x^2+16x-3\)
\(=-5x^2+15x+x-3\)
\(=-5x\left(x-3\right)+\left(x-3\right)\)
\(=\left(x-3\right)\left(1-5x\right)\)
Phân tích các đa thức sau thành nhân tử :
a) 5x^2 + 5xy - x -y
b)2x^2 + 3x - 5
c)16x - 5x^2 - 3
a, 5x^2 +5xy - x - y
= 5x ( x+ y ) - (x + y)
= ( 5x - 1)(x + y)
b, 2x^2 + 3x - 5
= 2x^2 - 2x + 5x - 5
= 2x( x - 1) + 5( x - 1)
= ( 2x + 5 )(x- 1 )
c; 16x - 5x^2 - 3
c, = - ( 5x^2 - 16x + 3 )
= - ( 5x^2 - x - 15x + 3 )
= - [ x(5x - 1 ) - 3 (5x - 1) ]
= - ( x- 3)(5x - 1 )
CÂU 3: PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ:
A) 3x^3-6x^2+3x
B) 16x^2y-4xy^2-4x^3
C) x^2+4x+4-9y^2
D) x^2-5x-6
\(a,3x^3-6x^2+3x\)
\(=3x\left(x^2-2x+1\right)\)
\(=3x\left(x-1\right)^2\)
\(b,16x^2y-4xy^2-4x^3\)
\(=-4x\left(x^2-4xy+4y^2-3y^2\right)\)
\(=-4x\left(x-2y+y\sqrt{3}\right)\left(x-2y-y\sqrt{3}\right)\)
phân tích đa thức thành nhân tử
a. 5x^2-10xy+5y^2-20z^2
b. 16x-5x^2-3
c. x^2-5x+5y-y^2
d. 3x^2-6xy+3x^2-12z^2
e. x^2+4x+3
f. (x^2+1)^2- 4x^2
h. x^2-4x-5
a.5x2-10xy+5y2-20z2
=5(x2-2xy+y2-4z2)
=5[ (x2-2xy+y2)-(2z)2 ]
=5[ (x-y)2-(2z)2 ]
=5(x-y-2z)(x-y+2z)
b.16x-5x2-3
=15x+x-5x2-3
=(15x-3)+(x-5x2)
=3(5x-1)+x(1-5x)
=3(5x-1)-x(5x-1)
=(5x-1)(3-x)
c.x2-5x+5y-y2
=(5y-5x)+(x2-y2)
=5(y-x)+(x-y)(x+y)
=5(y-x)-(y-x)(y+x)
=(y-x)[5-(y+x)]
=(y-x)(5-y-x)
d.3x2-6xy+3y2-12z2 (câu này hình như ở trên đề bạn ghi sai nha! Mình sửa lại luôn rồi đó)
=3(x2-2xy+y2-4z2)
=3[ (x2-2xy+y2)-(2z)2 ]
=3[ (x-y)2-(2z)2 ]
=3(x-y-2z)(x-y+2z)
e.x2+4x+3
=x2+3x+x+3
=(x2+x)+(3x+3)
=x(x+1)+3(x+1)
=(x+1)(x+3)
f.(x2+1)2-4x2
=(x2+1)2-(2x)2
=(x2+1-2x)(x2+1+2x)
h.x2-4x-5
=x2-5x+x-5
=(x2+x)+(-5x-5)
=x(x+1)-5(x+1)
-(x+1)(x-5)
bài 5 phân tích đa thúc sau thành nhân tử
1) 16x-5x2-3
2) 2x2+7x+5
3)2x2+3x+5
4) x3-3x2+1-3x
5) x2-4x-5
6) (a2+1)2-4a2
\(16x-5x^2-3\)
\(=-5x^2+16x-3\)
\(=-5x^2+15x+x-3\)
\(=\left(-5x^2+15x\right)+\left(x-3\right)\)
\(=-5x.\left(x-3\right)+\left(x-3\right)\)
\(=\left(-5x+1\right).\left(x-3\right)\)
\(2x^2+7x+5\)
\(=2x^2+2x+5x+5\)
\(=\left(2x^2+2x\right)+\left(5x+5\right)\)
\(=2x.\left(x+1\right)+5.\left(x+1\right)\)
\(=\left(2x+5\right).\left(x+1\right)\)
\(2x^2+3x+5\) (Bạn xem lại đề nhé.)
\(x^3-3x^2+1-3x\)
\(=\left(x^3+1\right)-\left(3x^2+3x\right)\)
\(=\left(x+1\right).\left(x^2-x+1\right)-3x.\left(x+1\right)\)
\(=\left(x+1\right).\left(x^2-x+1-3x\right)\)
\(=\left(x+1\right).\left(x^2-4x+1\right)\)
\(x^2-4x-5\)
\(=x^2-5x+x-5\)
\(=\left(x^2-5x\right)+\left(x-5\right)\)
\(=x.\left(x-5\right)+\left(x-5\right)\)
\(=\left(x+1\right).\left(x-5\right)\)
\(\left(a^2+1\right)^2-4a^2\)
\(=\left(a^2+1\right)^2-\left(2a\right)^2\)
\(=\left(a^2-2a+1\right).\left(a^2+2a+1\right)\)
\(=\left(a-1\right)^2.\left(a+1\right)^2\)
Phân tich đa thức thành nhân tử:
a) x3 - 2x - 4
b) x2 + 4x + 3
c) 16x - 5x2 -3
d) 2x2 + 7x +5
e) 2x2 +3x - 5
a) x3 - 2x -4=x3 - 2x2 + 2x2 - 4x +2x -4
=x2(x-2) + 2x(x-2)+2(x-2)
=(x-2)(x2 +2x +2)
b) x2 + 4x +3
=x2 + 2.x.2 +22 -1
=(x+2)2 - 12
=(x+2+1)(x+2-1)
=(x+3)(x+1)
d, 2x2+7x+5=2x2+2x+5x+5=2x(x+1)+5(x+1)=(2x+5)(x+1)
e, 2x2+3x-5=2x2-2x+5x-5=2x(x-1)+5(x-1)=(2x+5)(x-1)
Phân tích đa thức thành nhân tử(tách hạng tử)
1)x^2+2x-3
2)x^2-5x+6
3)x^2+7x^2+12x
4)x^2-x-12
5)3x^2+3x-36
6)5x^2-5x-10
7)3x^2-7x-6
8)4x^2+4x-3
9)8x^2-2x-3
Phân tích đa thức thành nhân tử(tách hạng tử)
1)x^2+2x-3=x^2-x+3x-3=x(x-1)+3(x-1)=(x-1)(x+3)
2)x^2-5x+6=x^2-2x-3x+6=x(x-2)-3(x-2)=(x-2)(x-3)
3)x^2+7x+12=(x+3)(x+4)
4)x^2-x-12=(x-4)(x+3)
5)3x^2+3x-36=3[(x-3)(x+4)]
6)5x^2-5x-10=5[(x-2)(x+1) ]
7)3x^2-7x-6=(x-3)(3x+2)
8)4x^2+4x-3=4x^2+6x-2x-3=(2x-1)(2x+3)
9)8x^2-2x-3=8x^2+4x-6x-3=(4x-3)(2x+1)
1: \(x^2+2x-3=\left(x+3\right)\left(x-1\right)\)
2: \(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
3: \(x^2+7x^2+12x=4x\left(2x+3\right)\)
4: \(x^2-x-12=\left(x-4\right)\left(x+3\right)\)
5: \(3x^2+3x-36=3\left(x^2+x-12\right)=3\left(x+4\right)\left(x-3\right)\)
6: \(5x^2-5x-10=5\left(x^2-x-2\right)=5\left(x-2\right)\left(x+1\right)\)