C=2x-6 căn x+1(với x lớn hơn hoặc=0)
tìm giá trị nhỏ nhất,giá trị lớn nhất của các biểu thức:
a A=căn( x-2)+căn(6-x)
b B=2x+căn(5-x^2)
c C=căn(1+x)+căn(8-x)
d D=2căn(x+5)+căn(1-2x)
`A=sqrt{x-2}+sqrt{6-x}(2<=x<=6)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{x-2+6-x}=2`
Dấu "=" `<=>x=2` hoặc `x=6`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(x-2+6-x)}=2sqrt2`
Dấu "=" `<=>x=4`
`C=sqrt{1+x}+sqrt{8-x}(-1<=x<=8)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{1+x+8-x}=3`
Dấu "=" `<=>x=-1` hoặc `x=8`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(1+x+8-x)}=3sqrt2`
Dấu "=" `<=>x=7/2`
`D=2sqrt{x+5}+sqrt{1-2x}(-5<=x<=1/2)`
`=sqrt{4x+20}+sqrt{1-2x}`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>D>=sqrt{4x+20+1-2x}=sqrt{2x+21}`
Mà `x>=-5`
`=>D>=sqrt{-10+21}=sqrt{11}`
Dấu "=" `<=>x=-5`
cho a=x+ căn x+10/x-9+1/ căn x -3 và b=căn x+1(với x lớn hơn hoặc bằng 0 x khác 9) tìm giá trị của x để a>b
\(A=\dfrac{x+\sqrt{x}+10+\sqrt{x}+3}{x-9}=\dfrac{x+2\sqrt{x}+13}{x-9}\)
Để A>B thì A-B>0
=>\(\dfrac{x+2\sqrt{x}+13}{x-9}-\sqrt{x}-1>0\)
=>\(\dfrac{x+2\sqrt{x}+13-\left(x-9\right)\left(\sqrt{x}+1\right)}{x-9}>0\)
=>\(\dfrac{x+2\sqrt{x}+13-x\sqrt{x}-x+9\sqrt{x}+9}{x-9}>0\)
=>\(\dfrac{-x\sqrt{x}+11\sqrt{x}+22}{x-9}>0\)
TH1: \(\left\{{}\begin{matrix}-x\sqrt{x}+11\sqrt{x}+22>0\\x-9>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}< 4.05\\x>9\end{matrix}\right.\Leftrightarrow9< x< 16.4025\)
TH2: \(\left\{{}\begin{matrix}-x\sqrt{x}+11\sqrt{x}+22< 0\\x-9< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>4.05\\0< x< 9\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Bài 6 Tìm x không âm biết
a)căn x<7
a)căn 2x<6
a)căn 4x lớn hơn hoặc bằng 4
a) căn x< căn 6
b)căn x>4
b)căn 2x bé hơn hoặc bằng 2
b)căn 3x bé hơn hoặc bằng căn 9
b) căn 7x bé hơn hoặc bằng căn 35
c) căn x+1>3
c) căn 4-x bé hơn hoặc bằng 6
c) căn 2x+1 bé hơn hoặc bằng 3
c)căn 3x+2> căn 11
Giúp mình với ạ
Giúp mình câu c với ạ
\(a_1,\sqrt{x}< 7\\ \Rightarrow x< 49\\ a_2,\sqrt{2x}< 6\\ \Rightarrow x< 18\\ a_3,\sqrt{4x}\ge4\\ \Rightarrow4x\ge16\\ \Rightarrow x\ge4\\ a_4,\sqrt{x}< \sqrt{6}\\ \Rightarrow x< 6\)
\(b_1,\sqrt{x}>4\\ \Rightarrow x>16\\ b_2,\sqrt{2x}\le2\\ \Rightarrow2x\le4\\ \Rightarrow x\le2\\ b_3,\sqrt{3x}\le\sqrt{9}\\ \Rightarrow3x\le9\\ \Rightarrow x\le3\\ b_4,\sqrt{7x}\le\sqrt{35}\\ \Rightarrow7x\le35\\ \Rightarrow x\le5\)
Mình cám ơn Hà Quang Minh rất nhiều
C = x+2 × căn x +1 trên căn x +2. Với x lớn hơn hoặc bằng 0, tìm giá trị nhỏ nhất của C
Tìm giá trị nhỏ nhất của biểu thức
A= -2 + 3 căn bậc hai của x + 1
Với x + 1 lớn hơn hoặc bằng 0
-> x lớn hơn hoặc bằng -1
Ai giải nhanh và đúng mik sẽ tick
tìm giá trị nhỏ nhất và lớn nhất của biểu thức A=x- căn x +5/4 với x>0
\(A=x-\sqrt{x}+\dfrac{5}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+1\ge1\\ A_{min}=1\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)
tìm giá trị nhỏ nhất của P , biết P = x - 2 (căn x - 3) + 2 với x lớn hơn hoặc bằng 3
A= x+1- (2x-2 căn x)/(căn x-1) + (x căn x+1)/ (x- căn x +1) rut gọn, tìm giá trị nhỏ nhất của A
cho biểu thức A= 1 phần 2 căn x - 2 - 1 phần 2 căn x +2 + căn x phần 1-x với x lớn hơn hoặc = 0; x khác 1
a/ rút gọn A
b/tính giá trị của A với x= 4 phần 9
c/ tính giá trị của x để giá trị tuyệt đối của A= 1 phần 3
a/ Để rút gọn biểu thức A, chúng ta có thể thực hiện các bước sau:
Tích hợp tử số và mẫu số trong mỗi phần tử của biểu thức.Sử dụng công thức (a + b)(a - b) = a^2 - b^2 để loại bỏ căn bậc hai khỏi mẫu số.Áp dụng các bước trên, ta có: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x))
Bây giờ, chúng ta sẽ rút gọn biểu thức này: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x)) = [(2√x + 2) + (2√x - 2) + (√x(2√x - 2)(2√x + 2))]/[(2√x - 2)(2√x + 2)(1 - x)] = [4√x + √x(4x - 4)]/[(4x - 4)(1 - x)] = [4√x + 4√x(x - 1)]/[-4(x - 1)(x - 1)] = [4√x(1 + x - 1)]/[-4(x - 1)(x - 1)] = -√x/(x - 1)
b/ Để tính giá trị của A với x = 4/9, ta thay x = 4/9 vào biểu thức đã rút gọn: A = -√(4/9)/(4/9 - 1) = -√(4/9)/(-5/9) = -√(4/9) * (-9/5) = -2/3 * (-9/5) = 6/5
Vậy, khi x = 4/9, giá trị của A là 6/5.
c/ Để tính giá trị của x sao cho giá trị tuyệt đối của A bằng 1/3, ta đặt: |A| = 1/3 |-√x/(x - 1)| = 1/3
Vì A là một số âm, ta có: -√x/(x - 1) = -1/3
Giải phương trình trên, ta có: √x = (x - 1)/3 x = ((x - 1)/3)^2 x = (x - 1)^2/9 9x = (x - 1)^2 9x = x^2 - 2x + 1 x^2 - 11x + 1 = 0
Sử dụng công thức giải phương trình bậc hai, ta có: x = (11 ± √(11^2 - 4 * 1 * 1))/2 x = (11 ± √(121 - 4))/2 x = (11 ± √117)/2
Vậy, giá trị của x để giá trị tuyệt đối của A bằng 1/3 là (11 + √117)/2 hoặc (11 - √117)/2.