Chứng minh. A=2+2^2+2^3+2^4...+2^60
Chứng minh. A=2+2^2+2^3+2^4...+2^60 chia hết cho 3
\(A=2+2^2+2^3+2^4+...+2^{60}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\\ =\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{58}\left(2+2^2\right)\\ =\left(2+2^2\right).\left(1+2^2+...+2^{58}\right)\\ =6.\left(1+2^2+...+2^{58}\right)⋮3\left(Vì:6⋮3\right)\)
A = 2 + 2² + 2³ + ... + 2⁵⁹ + 2⁶⁰
= (2 + 2²) + (2³ + 2⁴) + ... + (2⁵⁹ + 2⁶⁰)
= 2(1 + 2) + 2³(1 + 2) + ... + 2⁵⁹(1 + 2)
= 2.3 + 2³.3 + ... + 2⁵⁹.3
= 3(2 + 2³ + ... + 2⁵⁹) ⋮ 3
Ta có:
chia hết cho 3
=> A chia hết cho 3 (Đpcm).
a,Chứng minh rằng A là một lũy thừa của 2
A=4+2^2+2^3+2^4+......+2^20
b,Chứng tỏ A=3^1+3^2+3^3+.....+3^60 chia hết cho 13
b: \(A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{58}\right)⋮13\)
\(a,\Leftrightarrow2A=8+2^3+2^4+...+2^{21}\\ \Leftrightarrow2A-A=8+2^3+2^4+...+2^{21}-4-2^2-2^3-...-2^{20}\\ \Leftrightarrow A=2^{21}+8-4-2^2=2^{21}\left(đpcm\right)\\ b,A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+3^4+...+3^{58}\right)\\ A=13\left(3+3^4+...+3^{58}\right)⋮13\)
a,Chứng minh rằng A là một lũy thừa của 2
A=4+2^2+2^3+2^4+......+2^20
b,Chứng tỏ A=3^1+3^2+3^3+.....+3^60 chia hết cho 13
Chứng minh: A=2+2^2+2^3+2^4+.....+2^60 chia hết cho 3;7;15
Cho A= 2+2^2+2^3+2^4+...+2^59+2^60. Chứng minh A chia hết cho 7
A=2+2^2+2^3+...+2^59+2^60(có 60 số hạng)
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)[có 20 nhóm]
A=14*1+2^3*(2+2^2+2^3)+...+2^57*(2+2^2+2^3)
A=14*1+2^3*14+...+2^57*14
A=14*(1+2^3+...+2^57)
A=7*2*(1+2^3+...+2^57) chia hết cho 7(tick nha)
Cho A= 2^2 + 2^3 + 2^4 + 2^5 +... + 2^60. Chứng minh răng A chia hết cho 3,7,15
+A=2+22+23+...+2602+22+23+...+260
+A=(2+22)+(23+24)+...+(259+260)(2+22)+(23+24)+...+(259+260)
+A=2.(1+2)+23.(1+2)+..+259.(1+2)2.(1+2)+23.(1+2)+..+259.(1+2)
+A=2.3+23.3+..+259+32.3+23.3+..+259+3
=>A chia hết cho 3
Mấy câu sau thì nhóm 3,4 là Ok.
Mình nghĩ là làm như vậy, các bạn thấy thế nào?
Chứng minh A=2+2^2+2^3+2^4…+2^60 chia hết cho 7 (^ là mũ)
=(2+2^2+2^3)+.....+(2^58+2^59+2^60)
=(2+2^2+2^3)+2^3(2+2^2+2^3)+.....+2^57(2+2^2+2^3)
=14(1+2^3+....+2^57)
=7*2(1+2^3+.....+2^57) chia het cho 7
Cho A = 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +.....+ 2 mũ 60 . Chứng minh rằng A chia hết cho 3
\(A=2+2^2+...+2^{59}+2^{60}\)
\(A=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(A=2\cdot3+...+2^{59}\cdot3\)
\(A=3\cdot\left(2+...+2^{59}\right)⋮3\left(đpcm\right)\)
Số các số hạng của a là (60-1):1+1=60 số
ta thấy
a=2+22+23+...+260
a=(2+22)+(23+24)+...+(259+260)
a= 2*(1+2)+23*(1+2)+...259*(1+2)
a=2*3+23*3+...+259*3
a=2*(1+23+...+259)\(⋮\)3
Vậy a\(⋮\)3
k mình nha
chúc bn hok tốt
^- ^
chứng minh: A=21+22+23+24+...+260
chứng minh A chia hết cho 3,7,105
2A - A = 22 + 23 + 24 + 25 + ... + 261 - (21 + 22 + 23 + 24 +...260)
A = 261 - 21
A chia hết cho 3 vì ở đây A có thể chia cho 30
A chia hết cho 7 vì ở đây A có thể chia cho 14
A chia hết cho 105 vì ở đây A có thể chia cho 210