Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
GPSgaming
Xem chi tiết
Hoàng Phúc
5 tháng 1 2017 lúc 17:10

x^5+y^5 >= x^4y+xy^4

<=>x^5+y^5-x^4y-xy^4 >= 0

<=>x^4(x-y)-y^4(x-y) >= 0

<=>(x-y)(x^4-y^4) >= 0

<=>(x-y)(x^2-y^2)(x^2+y^2) >= 0

<=>(x-y)^2(x+y)(x^2+y^2) >= 0 (luôn đúng do x+y >= 0)

Vậy bđt đầu là đúng

•  Zero  ✰  •
Xem chi tiết
I - Vy Nguyễn
22 tháng 3 2020 lúc 12:29

P/s : Sửa đề : Cho x > y > 1 và x5 + y5 = x - y . Chứng minh rằng : x4 + y4 < 1

+)Ta có : x4 + y4 < x4 + x3y + x2y2 + xy3 + y4

Mà x > y > 1 \( \implies\) x - y > 0 

\( \implies\) ( x - y ) ( x4 + y) < ( x - y ) ( x4 + x3y + x2y2 + xy3 + y) ( * )

+)Ta có : ( x - y ) ( x4 + x3y + x2y2 + xy3 + y

            = x ( x4 + x3y + x2y2 + xy3 + y) - y ( x4 + x3y + x2y2 + xy3 + y

            = x5 + x4y + x3y2 + x2y+ xy4 - x4y -  x3y2 - x2y3 -  xy4 - y5

            = x5 - y5

\( \implies\) ( x - y ) ( x4 + x3y + x2y2 + xy3 + y) = x5 - y5 ( ** )

Từ ( * ) ; ( ** ) 

\( \implies\)  ( x - y ) ( x4 + y) <  x5 - y5

Mà   x5 - y5 < x5 + y5 

\( \implies\) ( x - y ) ( x4 + y) <  x5 - y5

\( \implies\) ( x - y ) ( x4 + y) < x - y 

\( \implies\)  x4 + y4 < 1 ( đpcm ) 

Khách vãng lai đã xóa
Đặng Nguyễn Khánh Uyên
Xem chi tiết
Đinh Đức Hùng
4 tháng 2 2017 lúc 11:43

Em mới lớp 7 nên chỉ biết giải bài 2 thôi

\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{a}\)

\(\Rightarrow\frac{a+b-c}{c}+2=\frac{a+c-b}{b}+2=\frac{c+b-a}{a}+2\)

\(=\frac{a+b}{c}-1+2=\frac{a+c}{b}-1+2=\frac{c+b}{a}-1+2\)

\(=\frac{a+b}{c}+1=\frac{a+c}{b}+1=\frac{c+b}{a}+1\)

\(=\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)

\(\Rightarrow a=b=c\) Thao vào P ta được :

\(P=\frac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a^3}=\frac{2a.2a.2a}{a^3}=\frac{8a^3}{a^3}=8\)

Phan Văn Hiếu
4 tháng 2 2017 lúc 13:06

1

xét hiệu \(x^5+y^5-x^4y-xy^4=x^4\left(x-y\right)-y^4\left(x-y\right)\)

       \(=\left(x^4-y^4\right)\left(x-y\right)=\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)^2\)

tự lập luộn nha \(\Rightarrow x^5+y^5-x^4y-xy^4\ge0\)

\(\Rightarrow x^5+y^5\ge x^4y+xy^4\)

pro
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 5 2021 lúc 17:34

\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{x^2y^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2+2xy}{x^2y^2}\)

\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2}{x^2y^2}+\dfrac{2}{xy}\ge2\sqrt{\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2x^2y^2}}+\dfrac{2}{xy}=\dfrac{2}{\left|xy\right|}+\dfrac{2}{xy}\ge\dfrac{2}{xy}+\dfrac{2}{xy}=\dfrac{4}{xy}\)

Sách Giáo Khoa
Xem chi tiết
Lightning Farron
30 tháng 3 2017 lúc 15:03

\(x^3+y^3\ge x^2y+xy^2\forall x,y\ge0\left(1\right)\)

*) Xét \(x=y=0\) thì \(\left(1\right)\) luôn đúng

*) Xét \(x,y>0\) ta có: \(VT=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

Áp dụng BĐT AM-GM ta có:

\(x^2+y^2\ge2xy\Rightarrow x^2-xy+y^2\ge2xy-xy=xy\)

\(\Rightarrow VT=\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\left(2\right)\)

Lại có: \(VP=x^2y+xy^2=xy\left(x+y\right)\left(3\right)\)

Từ \(\left(2\right)\)\(\left(3\right)\) suy ra BĐT được chứng minh

Vậy \(x^3+y^3\ge x^2y+xy^2\forall x,y\ge0\)

Nguyễn Tấn Dũng
30 tháng 3 2017 lúc 23:32

x3+y3\(\geq\) x2y + xy2, \(\forall\)x\(\geq\)0,\(\forall\)y\(\geq\)0

Xét x=0,y=0 thì bất đẳng thức này luôn đúng.(*)

Xét x>0,y>0,ta có CM bất đẳng thức đó luôn đúng

x3+y3\(\geq\) x2y+xy2

\(\Leftrightarrow\) x3+y3-x2y-xy2\(\geq\)0

\(\Leftrightarrow\) (x3-x2y) + (y3-xy2) \(\geq\)0

\(\Leftrightarrow\) x2(x-y) - y2(x-y) \(\geq\) 0

\(\Leftrightarrow\) (x-y)(x2-y2) \(\geq\) 0

\(\Leftrightarrow\) (x-y)(x-y)(x+y) \(\geq\) 0

\(\Leftrightarrow\) (x-y)2(x+y) \(\geq\) 0 (1)

Ta có (x-y)2\(\geq\)0, x+y >0(vì x>0,y>0)

Nên bất phương trình (1); (x-y)2(x+y) \(\geq\) 0(luôn đúng)(**)

Từ(*) và (**) suy ra BĐT được chứng minh:

x3+y3\(\geq\) x2y+xy2, \(\forall\)x\(\geq\)0,\(\forall\)y\(\geq\)0

Dấu "=" xảy ra khi và chỉ khi x=y.

Nguyễn Phú Hoàng Phong
Xem chi tiết
Akai Haruma
14 tháng 6 2021 lúc 23:47

Lời giải:

$x^5+y^5+z^5=(x^2+y^2+z^2)(x^3+y^3+z^3)-[x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)]$

Mà:

$x^3+y^3+z^3=(x+y)^3-3xy(x+y)+z^3$

$=(-z)^3-3xy(-z)+z^3=3xyz$

Và:

\(x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)\)

\(=x^2y^2(x+y)+y^2z^2(y+z)+z^2x^2(z+x)=-x^2y^2z-y^2z^2x-x^2y^2z\)

\(=-xyz(xy+yz+xz)=-xyz[\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}]=\frac{xyz(x^2+y^2+z^2)}{2}\)

Do đó: \(x^5+y^5+z^5=3xyz(x^2+y^2+z^2)-\frac{xyz(x^2+y^2+z^2)}{2}=\frac{5xyz(x^2+y^2+z^2)}{2}\)

\(\Rightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)\)

Ta có đpcm.

 

 

Dũng Lê Trí
Xem chi tiết
Dũng Lê Trí
24 tháng 1 2018 lúc 21:06

Cái này anh mình đăng chứ ko phải mình nha,đug hiểu lầm

Nguyễn Tân
Xem chi tiết
Dong tran le
26 tháng 12 2017 lúc 19:02

Áp dụng BĐT Cô-si với 2 số ko âm,ta có:

x^2+y^2>=2xy

y^2+16>=8y

x^2+16>=8y

suy ra 2(x^2+y^2+16)>=2xy+8x+8y

suy ra x^2+y^2+16>=xy+4x+4y

Nguyễn Minh Nhật
Xem chi tiết
Fischer2709
16 tháng 5 2023 lúc 23:44

Vẫn đề đó hả em

Câu này dùng BĐT Schur là ra luôn cx đc, nhưng mà thế thì hơi mất hứng, anh thử đề xuất phương án này ha

VT=\(cyc\sum x^5.\left(x-y+z\right)\) Gấp đôi vế trái lên và phá ngoặc ra nhóm  về kiểu này

2.VT=(x^6-2x^5y+2xy^5+y^6)+.......tương tự như thế ha

       Giờ chỉ cần mỗi cái ngoặc này >=0 là cả lũ >=0 do tương tự

Mà \(x^6-2x^5y+2xy^5+y^6=\left(x^2+y^2\right).\left(x^2-xy-y^2\right)^2\)  (Cái này em nhóm 2 cái cuối, 2 cái giữa xong triển khai ra là đc)

       Dễ thấy x^2+y^2>=0, cái ngoặc kia là bình phương cũng >=0

 Do đó cái TH kia >=0. Các th còn lại thì cx tương tự

 Cộng vế với vế suy ra 2VT>=0, Hay VT>=0 (đpcm)

Fischer2709
16 tháng 5 2023 lúc 23:48

Anh gửi riêng phần phân tích này

\(x^6-2x^5y+2xy^5+y^6=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)-2xy\left(x^2+y^2\right)\left(x^2-y^2\right)=\left(x^2+y^2\right).\left(x^4-x^2y^2+y^4-2xy\left(x^2-y^2\right)\right)=\left(x^2+y^2\right)\left(\left(x^4-2x^2y^2+y^4\right)-2xy\left(x^2-y^2\right)+x^2y^2\right)\)Viết tiếp cái ngoặc to thành bình phương là ra cái anh vt chỗ trên đầu nhé

Thử xem có đc ko