Chứng minh : x5+y5\(\ge x^4y+xy^4\)vs x,y \(\ne0\)và \(x+y\ge0\)
Chứng minh rằng:
\(x^5+y^5\ge x^4y+xy^4\) với \(x,y\ne0\)và \(x+y\ge0\)
x^5+y^5 >= x^4y+xy^4
<=>x^5+y^5-x^4y-xy^4 >= 0
<=>x^4(x-y)-y^4(x-y) >= 0
<=>(x-y)(x^4-y^4) >= 0
<=>(x-y)(x^2-y^2)(x^2+y^2) >= 0
<=>(x-y)^2(x+y)(x^2+y^2) >= 0 (luôn đúng do x+y >= 0)
Vậy bđt đầu là đúng
Cho x > y > 1 và x5 + y5 = x - y . Chứng minh rằng : x^4 + y^4 < 1
P/s : Sửa đề : Cho x > y > 1 và x5 + y5 = x - y . Chứng minh rằng : x4 + y4 < 1
+)Ta có : x4 + y4 < x4 + x3y + x2y2 + xy3 + y4
Mà x > y > 1 \( \implies\) x - y > 0
\( \implies\) ( x - y ) ( x4 + y4 ) < ( x - y ) ( x4 + x3y + x2y2 + xy3 + y4 ) ( * )
+)Ta có : ( x - y ) ( x4 + x3y + x2y2 + xy3 + y4 )
= x ( x4 + x3y + x2y2 + xy3 + y4 ) - y ( x4 + x3y + x2y2 + xy3 + y4 )
= x5 + x4y + x3y2 + x2y3 + xy4 - x4y - x3y2 - x2y3 - xy4 - y5
= x5 - y5
\( \implies\) ( x - y ) ( x4 + x3y + x2y2 + xy3 + y4 ) = x5 - y5 ( ** )
Từ ( * ) ; ( ** )
\( \implies\) ( x - y ) ( x4 + y4 ) < x5 - y5
Mà x5 - y5 < x5 + y5
\( \implies\) ( x - y ) ( x4 + y4 ) < x5 - y5
\( \implies\) ( x - y ) ( x4 + y4 ) < x - y
\( \implies\) x4 + y4 < 1 ( đpcm )
1.Chứng minh rằng: \(x^5+y^5\ge x^4y+xy^4\)với \(x,y\ne0;x+y\ge0\)
2.Cho ba số a, b, c khác 0 thỏa nãm đẳng thức : \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{a}\)
Tính : \(P=\frac{\left(a+b\right)\left(b+a\right)\left(a+c\right)}{abc}\)
Các thánh lại giải bài này đi!!!
Em mới lớp 7 nên chỉ biết giải bài 2 thôi
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{a}\)
\(\Rightarrow\frac{a+b-c}{c}+2=\frac{a+c-b}{b}+2=\frac{c+b-a}{a}+2\)
\(=\frac{a+b}{c}-1+2=\frac{a+c}{b}-1+2=\frac{c+b}{a}-1+2\)
\(=\frac{a+b}{c}+1=\frac{a+c}{b}+1=\frac{c+b}{a}+1\)
\(=\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)
\(\Rightarrow a=b=c\) Thao vào P ta được :
\(P=\frac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a^3}=\frac{2a.2a.2a}{a^3}=\frac{8a^3}{a^3}=8\)
1
xét hiệu \(x^5+y^5-x^4y-xy^4=x^4\left(x-y\right)-y^4\left(x-y\right)\)
\(=\left(x^4-y^4\right)\left(x-y\right)=\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)^2\)
tự lập luộn nha \(\Rightarrow x^5+y^5-x^4y-xy^4\ge0\)
\(\Rightarrow x^5+y^5\ge x^4y+xy^4\)
Cho số thực x và y thỏa mãn \(x\ne y;x\ne0;y\ne0\)
CMR: \(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{x^2y^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2+2xy}{x^2y^2}\)
\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2}{x^2y^2}+\dfrac{2}{xy}\ge2\sqrt{\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2x^2y^2}}+\dfrac{2}{xy}=\dfrac{2}{\left|xy\right|}+\dfrac{2}{xy}\ge\dfrac{2}{xy}+\dfrac{2}{xy}=\dfrac{4}{xy}\)
Chứng minh rằng :
\(x^3+y^3\ge x^2y+xy^2,\forall\ge0,\forall y\ge0\)
\(x^3+y^3\ge x^2y+xy^2\forall x,y\ge0\left(1\right)\)
*) Xét \(x=y=0\) thì \(\left(1\right)\) luôn đúng
*) Xét \(x,y>0\) ta có: \(VT=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Áp dụng BĐT AM-GM ta có:
\(x^2+y^2\ge2xy\Rightarrow x^2-xy+y^2\ge2xy-xy=xy\)
\(\Rightarrow VT=\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\left(2\right)\)
Lại có: \(VP=x^2y+xy^2=xy\left(x+y\right)\left(3\right)\)
Từ \(\left(2\right)\) và \(\left(3\right)\) suy ra BĐT được chứng minh
Vậy \(x^3+y^3\ge x^2y+xy^2\forall x,y\ge0\)
x3+y3\(\geq\) x2y + xy2, \(\forall\)x\(\geq\)0,\(\forall\)y\(\geq\)0
Xét x=0,y=0 thì bất đẳng thức này luôn đúng.(*)
Xét x>0,y>0,ta có CM bất đẳng thức đó luôn đúng
x3+y3\(\geq\) x2y+xy2
\(\Leftrightarrow\) x3+y3-x2y-xy2\(\geq\)0
\(\Leftrightarrow\) (x3-x2y) + (y3-xy2) \(\geq\)0
\(\Leftrightarrow\) x2(x-y) - y2(x-y) \(\geq\) 0
\(\Leftrightarrow\) (x-y)(x2-y2) \(\geq\) 0
\(\Leftrightarrow\) (x-y)(x-y)(x+y) \(\geq\) 0
\(\Leftrightarrow\) (x-y)2(x+y) \(\geq\) 0 (1)
Ta có (x-y)2\(\geq\)0, x+y >0(vì x>0,y>0)
Nên bất phương trình (1); (x-y)2(x+y) \(\geq\) 0(luôn đúng)(**)
Từ(*) và (**) suy ra BĐT được chứng minh:
x3+y3\(\geq\) x2y+xy2, \(\forall\)x\(\geq\)0,\(\forall\)y\(\geq\)0
Dấu "=" xảy ra khi và chỉ khi x=y.
Cho ba số x, y và z thỏa mãn x + y + z = 0. Chứng minh rằng
2(x5 + y5 + z5) = 5xyz(x2 + y2 + z2).
Lời giải:
$x^5+y^5+z^5=(x^2+y^2+z^2)(x^3+y^3+z^3)-[x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)]$
Mà:
$x^3+y^3+z^3=(x+y)^3-3xy(x+y)+z^3$
$=(-z)^3-3xy(-z)+z^3=3xyz$
Và:
\(x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)\)
\(=x^2y^2(x+y)+y^2z^2(y+z)+z^2x^2(z+x)=-x^2y^2z-y^2z^2x-x^2y^2z\)
\(=-xyz(xy+yz+xz)=-xyz[\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}]=\frac{xyz(x^2+y^2+z^2)}{2}\)
Do đó: \(x^5+y^5+z^5=3xyz(x^2+y^2+z^2)-\frac{xyz(x^2+y^2+z^2)}{2}=\frac{5xyz(x^2+y^2+z^2)}{2}\)
\(\Rightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)\)
Ta có đpcm.
Chứng minh các bất đẳng thức sau :
a)\(5\left(x-1\right)< x^5-1< 5x^4\left(x-1\right)\),nếu x - 1 > 0
b) \(x^5+y^5-x^4y-xy^4\ge0\)biết \(x+y\ge0\)
Cái này anh mình đăng chứ ko phải mình nha,đug hiểu lầm
Cho x , y là các số thực. Chứng minh : x^2 + y^2 + 16 ≥ xy + 4x + 4y
Áp dụng BĐT Cô-si với 2 số ko âm,ta có:
x^2+y^2>=2xy
y^2+16>=8y
x^2+16>=8y
suy ra 2(x^2+y^2+16)>=2xy+8x+8y
suy ra x^2+y^2+16>=xy+4x+4y
chứng minh rằng , với mọi số thực x,y,z ta có
(z+x-y)x5+(x+y-z)y5+(y+z-x)z5≥0
Vẫn đề đó hả em
Câu này dùng BĐT Schur là ra luôn cx đc, nhưng mà thế thì hơi mất hứng, anh thử đề xuất phương án này ha
VT=\(cyc\sum x^5.\left(x-y+z\right)\) Gấp đôi vế trái lên và phá ngoặc ra nhóm về kiểu này
2.VT=(x^6-2x^5y+2xy^5+y^6)+.......tương tự như thế ha
Giờ chỉ cần mỗi cái ngoặc này >=0 là cả lũ >=0 do tương tự
Mà \(x^6-2x^5y+2xy^5+y^6=\left(x^2+y^2\right).\left(x^2-xy-y^2\right)^2\) (Cái này em nhóm 2 cái cuối, 2 cái giữa xong triển khai ra là đc)
Dễ thấy x^2+y^2>=0, cái ngoặc kia là bình phương cũng >=0
Do đó cái TH kia >=0. Các th còn lại thì cx tương tự
Cộng vế với vế suy ra 2VT>=0, Hay VT>=0 (đpcm)
Anh gửi riêng phần phân tích này
\(x^6-2x^5y+2xy^5+y^6=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)-2xy\left(x^2+y^2\right)\left(x^2-y^2\right)=\left(x^2+y^2\right).\left(x^4-x^2y^2+y^4-2xy\left(x^2-y^2\right)\right)=\left(x^2+y^2\right)\left(\left(x^4-2x^2y^2+y^4\right)-2xy\left(x^2-y^2\right)+x^2y^2\right)\)Viết tiếp cái ngoặc to thành bình phương là ra cái anh vt chỗ trên đầu nhé
Thử xem có đc ko