root(2x + 2, 3) + root(2x + 1, 3) = root(2x ^ 2, 3) + root(2x ^ 2 + 1, 3)
Cho `2x^3=3y^3=4z^3`
`CMR:(\root{3}{2x^2+3y^2+4z^2})/(\root{3}{2}+\root{3}{3}+\root{3}{4})=1`
Giúp!
Đề bài sai/thiếu
Ví dụ: \(x=y=z=0\) thì \(2x^3=3y^3=4z^3\) nhưng \(\dfrac{\sqrt[3]{2x^2+3y^2+4z^2}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}}=0\)
Nếu thêm điều kiện \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\) (với \(x;y;z\ne0\))
Đặt \(2x^3=3y^3=4z^3=k^3\Rightarrow\left\{{}\begin{matrix}x=\dfrac{k}{\sqrt[3]{2}}\\y=\dfrac{k}{\sqrt[3]{3}}\\z=\dfrac{k}{\sqrt[3]{4}}\end{matrix}\right.\)
Thay vào \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\Rightarrow\dfrac{\sqrt[3]{2}}{k}+\dfrac{\sqrt[3]{3}}{k}+\dfrac{\sqrt[3]{4}}{k}=1\)
\(\Rightarrow\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}=k\)
Lại có:
\(\left\{{}\begin{matrix}2x^3=k^3\Rightarrow2x^2=\dfrac{k^3}{x}\\3y^3=k^3\Rightarrow3y^2=\dfrac{k^3}{y}\\4z^3=k^3\Rightarrow4z^2=\dfrac{k^3}{z}\end{matrix}\right.\) \(\Rightarrow2x^2+3y^2+4z^2=k^3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=k^3\)
\(\Rightarrow\dfrac{\sqrt[3]{2x^2+3y^2+4z^2}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}}=\dfrac{\sqrt[3]{k^3}}{k}=1\)
$x=\root(3)(22\sqrt(2+)25-\root(3)(22\sqrt(2))- 25)$
Đặt \(A=\sqrt[3]{22\sqrt{2}+25}-\sqrt[3]{22\sqrt{2}-25}\)
\(\Rightarrow A^3=50-3\sqrt[3]{\left(22\sqrt{2}+25\right)\left(22\sqrt{2}-25\right)}\left(\sqrt[3]{22\sqrt{2}+25}-\sqrt[3]{22\sqrt{2}-25}\right)\)
\(\Rightarrow A^3=50-3\sqrt[3]{\left(22\sqrt{2}+25\right)\left(22\sqrt{2}-25\right)}\cdot A\)
\(\Rightarrow A^3=50-3A\sqrt[3]{343}=50-21A\)
\(\Rightarrow A^3+21A-50=0\Leftrightarrow A^3-4A+25A-50=0\)
\(\Leftrightarrow\left(A-2\right)\left(A^2+2A+25\right)=0\)
\(\Leftrightarrow A=2\left(A^2+2A+25>0,\forall A\right)\)
\(\Rightarrow\sqrt[3]{22\sqrt{2}+25}-\sqrt[3]{22\sqrt{2}-25}=2\)
Tick nha bạn 😘
Rút gọn D = root(3, 27) - root(3, - 8) - root(3, 125)
root(x ^ 2 + 2, 3) = 3
root(5x + 2, 3) = 3
ĐKXĐ: x>=-0,46
\(\sqrt{5x+2,3}=3\)
=>5x+2,3=9
=>5x=6,7
=>x=1,34
3 * root(x - 2, 3) = - 6
\(3\sqrt[3]{x-2,3}=-6\)
\(\Leftrightarrow\sqrt[3]{x-2,3}=-\dfrac{6}{3}\)
\(\Leftrightarrow\sqrt[3]{x-2,3}=-2\)
\(\Leftrightarrow x-2,3=\left(-2\right)^3\)
\(\Leftrightarrow x-2,3=-8\)
\(\Leftrightarrow x=-8+2,3\)
\(\Leftrightarrow x=-5,7\)
Vậy: x=-5,7
Với `p;q;r;s\inRR : {(p+q+r+s=0),(p<q<r<s):}` chứng minh rằng: `p<1/2 \root[3]{(\sqrt(24(pq+pr+ps+qr+qs+rs)^3+81(pqr+qrs+rsp+spq)^2)+9(pqr+qrs+rsp+spq))/(9)}-(pq+pr+ps+qr+qs+rs)/(\root[3]{3\sqrt(24(pq+pr+ps+qr+qs+rs)^3+81(pqr+qrs+rsp+spq)^2)+27(pqr+qrs+rsp+spq)})<s`
Nhìn đề đến một người theo Toán như anh còn thấy nản í :)
ừ thì năm nay lên 11 nma toi đ hiểu đây là cgi =))
`(\root[3]{26+15\sqrt{3}}-\sqrt{3})/(\sqrt{6-2\sqrt{5}-\sqrt{5})`
\(=\dfrac{2+\sqrt{3}-\sqrt{3}}{\sqrt{5}-1-\sqrt{5}}=-2\)
root(5x + 2, 3) = 3 5sqrt(4x - 16) - 7/3 * sqrt(9x - 36) = 36 - 3sqrt(x - 4)
b:
ĐKXĐ: x>=4
\(5\sqrt{4x-16}-\dfrac{7}{3}\cdot\sqrt{9x-36}=36-3\sqrt{x-4}\)
=>\(5\cdot2\cdot\sqrt{x-4}-\dfrac{7}{3}\cdot3\cdot\sqrt{x-4}+3\sqrt{x-4}=36\)
=>\(6\sqrt{x-4}=36\)
=>\(\sqrt{x-4}=6\)
=>x-4=36
=>x=40