Phân tích thành nhân tử
\(\sqrt{a-b}-\sqrt{a^2-b^2}\)
phân tích thành nhân tử
\(\sqrt{a^2-b^2}+\sqrt{a-b}\)
\(=\sqrt{a-b}\left(\sqrt{a+b}+1\right)\)
\(=\sqrt{\left(a+b\right)\left(a-b\right)}+\sqrt{a-b
}\)
\(=\sqrt{a-b}\cdot\sqrt{a+b}+\sqrt{a-b}\)
\(=\sqrt{a-b}\cdot\left(\sqrt{a+b}+1\right)\)
phân tích đa thức thành nhân tử (với a b x y không âm, a> b)
a) xy - \(y\sqrt{x}\) + \(\sqrt{x}-1\)
b) \(\sqrt{ab}-\sqrt{by}+\sqrt{bx}+\sqrt{ay}\)
c) \(\sqrt{a+b}+\sqrt{a^2+b^2}\)
d) 12 - \(\sqrt{x}\) - x
d: \(=-\left(x+\sqrt{x}-12\right)=-\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)\)
phân tích đa tức thành nhân tử
a) 5+ \(\sqrt{x}\) + 25 - x
b) xy -x\(\sqrt{y}\) + \(\sqrt{y}\) - 1
c)\(\sqrt{a-b}\) - \(\sqrt{a^2-b^2}\)
d) \(\sqrt{ax}\) + \(\sqrt{by}\) - \(\sqrt{bx}\) -\(\sqrt{ay}\)
Giair hộ mình vs ạ!
Phân tích các đa thức sau thành nhân tử
\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)
\(a+\sqrt{a}+2\sqrt{ab}+2\sqrt{b}\)
\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)
\(=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)
\(=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)
\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\sqrt{b}\right)\)
\(a+\sqrt{a}+2\sqrt{ab}+2\sqrt{b}\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)\)
\(=\left(\sqrt{a}+2\sqrt{b}\right)\left(\sqrt{a}+1\right)\)
Phân tích đa thức thành nhân tử
\(\sqrt{a-b}-\sqrt{a^2-b^2}\)
Lời giải :
\(\sqrt{a-b}-\sqrt{a^2-b^2}\)
\(=\sqrt{a-b}-\sqrt{a-b}\cdot\sqrt{a+b}\)
\(=\sqrt{a-b}\left(1-\sqrt{a+b}\right)\)
Phân tích đa thức thành nhân tử (với các căn thức đều đã có nghĩa):
a) A = \(\sqrt{x^3}\) - \(\sqrt{y^3}\) + \(\sqrt{x^2y}\) - \(\sqrt{xy^2}\)
b) B = 5x2 - 7x\(\sqrt{y}\) + 2y
a: \(A=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2\)
b: \(B=5x^2-7x\sqrt{y}+2y\)
\(=5x^2-5x\sqrt{y}-2x\sqrt{y}+2y\)
\(=5x\left(x-\sqrt{y}\right)-2\sqrt{y}\left(x-\sqrt{y}\right)\)
\(=\left(x-\sqrt{y}\right)\left(5x-2\sqrt{y}\right)\)
Biểu thức \(a\sqrt{b}+\sqrt{ab}+\sqrt{a}+1\)(a≥0, b≥0) được phân tích thành nhân tử là
\(a\sqrt{b}+\sqrt{ab}+\sqrt{a}+1\)
\(=\sqrt{ab}\cdot\sqrt{a}+\sqrt{ab}+\sqrt{a}+1\)
\(=\left(\sqrt{ab}\cdot\sqrt{a}+\sqrt{ab}\right)+\left(\sqrt{a}+1\right)\)
\(=\sqrt{ab}\cdot\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)\)
\(=\left(\sqrt{ab}+1\right)\left(\sqrt{a}+1\right)\)
a√b + √(ab) + √a + 1
= [a√b + √(ab)] + (√a + 1)
= √(ab)(√a + 1) + (√a + 1)
= (√a + 1)[√(ab) + 1]
phân tích thành nhân tử
\(a-6\sqrt{a}+9-b^2\)
\(x-9\)
\(x-7\sqrt{x}+12\)
\(x\sqrt{x}-64\)
làm chi tiết xíu giúp em ạ.
a: =(căn a-3)^2-b^2
=(căn a-3-b)(căn a-3+b)
b: \(x-9=\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\)
c: \(x-7\sqrt{x}+12=x-3\sqrt{x}-4\sqrt{x}+12=\left(\sqrt{x}-3\right)\left(\sqrt{x}-4\right)\)
d: x*căn x-64
=(căn x)^3-4^3
=(căn x-4)(x+4căn x+16)
\(a-6\sqrt{a}+9-b^2\\ =\left(\sqrt{a}+3\right)^2-b^2\\ =\left(\sqrt{a}+3-b\right)\left(\sqrt{a}+3+b\right)\)
\(x-9=\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\)
\(x-7\sqrt{x}+12\\ =x-4\sqrt{x}-3\sqrt{x}+12\\ =\sqrt{x}\left(\sqrt{x}-4\right)-3\left(\sqrt{x}-4\right)\\ =\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)\)
\(x\sqrt{x}+64\\ =\sqrt{x^3}+4^3\\ =\left(\sqrt{x}\right)^3+4^3\\ =\left(\sqrt{x}+4\right)\left(x-4\sqrt{x}+16\right)\)
\(a\sqrt{a}+2a+\sqrt{a}+2\)
Phân tích đa thức thành nhân tử
\(a\sqrt{a}+2a+\sqrt{a}+2=\left(a\sqrt{a}+2a\right)+\left(\sqrt{a}+2\right)\)
\(=a\left(\sqrt{a}+2\right)+\left(\sqrt{a}+2\right)=\left(\sqrt{a}+2\right)\left(a+1\right)\)
\(a\sqrt{a}+2a+\sqrt{a}+2=a\left(\sqrt{a}+2\right)+\left(\sqrt{a}+2\right)=\left(a+1\right)\left(\sqrt{a}+2\right)\)
\(a\sqrt{a}+2a+\sqrt{a}+2=\left(\sqrt{a}+2\right)\left(a+1\right)\)