Tìm x
giúp mình với ạ hicc xét dấu biểu thức sau
a. f(x)= (x-3)(4-x)
b. f(x)= -x^2-5x+6
giải bất phương trình
a. x^2 + x - 2 = 0
b. (x-1)(x^2+3x+2)<= 2
tìm m để phương trình sau vô nghiệm x^2+(m+2)x+9/4=0
a, \(Chof\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
- Lập bảng xét dấu :
Vậy \(\left\{{}\begin{matrix}f\left(x\right)>0\Leftrightarrow x\in\left(3;4\right)\\f\left(x\right)< 0\Leftrightarrow x\in\left(-\infty;3\right)\cup\left(4;+\infty\right)\\f\left(x\right)=0\Leftrightarrow x\in\left\{3;4\right\}\end{matrix}\right.\)
b, \(f\left(x\right)=\left(x-1\right)\left(x+6\right)\)
( Làm tương tự câu a )
M(x) = x^2 -3x + 2
Tìm nghiệm của M(x)
Cho \(M\left(x\right)=0\)
hay \(x^2-3x+2=0\)
⇒ \(x^2-2x-x+2=0\)
\(x.x-2x-x+2=0\)
\(x.\left(x-2\right)-\left(x+2\right)=0\)
⇒ \(\left(x-1\right).\left(x-2\right)=0\)
⇒ \(x-1=0\) hoặc \(x-2=0\)
* \(x-1=0\) * \(x-2=0\)
\(x\) \(=0+1\) \(x\) \(=0+2\)
\(x\) \(=1\) \(x\) \(=2\)
Vậy \(x=1\) hoặc \(x=2\) là nghiệm của \(M\left(x\right)\)
a) 2x(x^3 – 3) – 2x^4 = 18.
b) 9x(4 – x) + (3x + 1)^2 = 2
Tìm x, biết:trình bày ra luôn
\(a,2x\left(x^3-3\right)-2x^4=18\\ 2x^4-6x-2x^4=18\\ -6x=18\\ x=-3\)
\(b,9x\left(4-x\right)+\left(3x+1\right)^2=2\\ 36x-9x^2+9x^2+6x+1=2\\ 42x=2-1\\ 42x=1\\ x=\dfrac{1}{42}\)
\(a,\Leftrightarrow2x^4-3x-2x^4=18\Leftrightarrow-3x=18\Leftrightarrow x=-6\\ b,\Leftrightarrow36x-9x^2+9x^2+6x+1=2\\ \Leftrightarrow42x=1\Leftrightarrow x=\dfrac{1}{42}\)
x^3+3x^2+x+a chia hết cho x-2
tìm a
\(x^3+3x^2+x+a=x^2\left(x-2\right)+5x\left(x-2\right)+11\left(x-2\right)+22+a=\left(x-2\right)\left(x^2+5x+11\right)+22+a⋮\left(x-2\right)\)
\(\Rightarrow22+a=0\Rightarrow a=-22\)
cho hệ pt 3x-y=2m-1 và x+2y=3m+2
tìm m để hpt có nghiệm ( x;y) thỏa mãn \(^{x^2}\)+\(^{y^2}\)đạt GTNN
Ta có: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\y=3x-2m+1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)
Mặt khác: \(x^2+y^2=2m^2+2m+1=2\left(m^2+m+\dfrac{1}{2}\right)\)
\(=2\left(m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
Dấu bằng xảy ra \(\Leftrightarrow m+\dfrac{1}{2}=0\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy ...
Phân tích thành nhân tử
(3x+2)^2-(x-6)^2
Tìm giá trị nhỏ nhất
A= x^2+2y^2+2xy-2y+2021
1) \(\left(3x+2\right)^2-\left(x-6\right)^2=\left(3x+2-x+6\right)\left(3x+2+x-6\right)=\left(2x+8\right)\left(4x-4\right)=8\left(x+4\right)\left(x-1\right)\)
2) \(A=x^2+2y^2+2xy-2y+2021=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)+2020=\left(x+y\right)^2+\left(y-1\right)^2+2020\ge2020\)
\(minA=2020\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
\(\left(3x+2\right)^2-\left(x-6\right)^2=\left(3x+2-x+6\right)\left(3x+2+x-6\right)=\left(2x+8\right)\left(4x-4\right)=2.\left(x+4\right).4\left(x-1\right)=8\left(x-1\right)\left(x+4\right)\)
Bài 1:
Ta có: \(\left(3x+2\right)^2-\left(x-6\right)^2\)
\(=\left(3x+2-x+6\right)\left(3x+2+x-6\right)\)
\(=\left(2x+8\right)\left(4x-4\right)\)
\(=8\left(x+4\right)\left(x-1\right)\)
cho các đa thức P (x) =-5x^3+3x^2+2x+5
Q(x)= -5x^3+6x^2+2x+5
tính giá trị đa thức P(x)+Q(x) tại x =1/2
tìm x để Q(x)-P(x)= 6
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-5.\left(\dfrac{1}{2}\right)^3+3\left(\dfrac{1}{2}\right)^2+\dfrac{2}{2}+5-5\left(\dfrac{1}{2}\right)^3+6\left(\dfrac{1}{2}\right)^2+\dfrac{2}{2}+5\)
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-\dfrac{5.1}{8}+\dfrac{3.1}{4}+6-\dfrac{5.1}{8}+\dfrac{6.1}{4}+6\)
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-\dfrac{5}{8}+\dfrac{3}{4}+6-\dfrac{5}{8}+\dfrac{3}{2}+6\)
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=13\)
\(Q\left(x\right)-P\left(x\right)=6\)
\(-5x^3+6x^2+2x+5+5x^3-3x^2-2x-5=6\)
\(3x^2=6\)
\(x^2=2\)
\(=>x=\pm\sqrt{2}\)
Cho hai biểu thức sau2P+Q=x^2y 6xy^2 3x^2y^2P-Q=2x^2y-xy^2 3x^2y^2Tìm đa thức P và Q
a) 5(k+3x)(x+1)-4(1+2x)=80 x\(_0\)=2Tìm gt của kb) x+1=xc) x+2=0d) x+5=0e) (x+1)(2x-3)-3(x-2)=2(x-1)\(^2\)f) (x+1)(x\(^2\)-x+1)-2x=x(x-1)(x+1)g)\(\dfrac{x}{3}\)-\(\dfrac{5x}{6}\)-\(\dfrac{15x}{12}\)=\(\dfrac{x}{4}\)-5h) \(\dfrac{x-1}{2}\)-\(\dfrac{x+1}{15}\)-\(\dfrac{2x-13}{6}\)=0i) \(\dfrac{3\left(5x-2\right)}{4}\)-2=\(\dfrac{7x}{3}\)-5(x-7)
j) \(\dfrac{x-3}{11}\)+\(\dfrac{x+1}{3}\)=\(\dfrac{x+7}{9}\)-1k)\(\dfrac{3x-0,4}{2}\)+\(\dfrac{1,5-2x}{3}\)=\(\dfrac{x+0,5}{5}\)l) \(\dfrac{x-4}{5}\)+\(\dfrac{3x-2}{10}\)-x=\(\dfrac{2x-5}{3}\)-\(\dfrac{7x+2}{6}\)m) \(\dfrac{\left(2x-3\right)\left(2x+3\right)}{8}\)=\(\dfrac{\left(x-4\right)^{^2}}{6}\)+\(\dfrac{\left(x-2^{ }\right)^2}{3}\)n) \(\dfrac{7x^2-14x-5}{15}\)=\(\dfrac{\left(2x+1\right)^2}{5}\)-\(\dfrac{\left(x-1\right)^2}{3}\)o) \(\dfrac{\left(7x+1\right)\left(x-2\right)}{10}\)+\(\dfrac{2}{5}\)=\(\dfrac{\left(x-2^{ }\right)^2}{5}\)+\(\dfrac{\left(x-1\right)\left(x-2\right)}{10}\)
Chia câu hỏi ra cho thành nhiều phần cho dễ trả lời á bạn