Chứng minh rằng : a2+b2+ 1/ a2+1/b2 > hoặc = 4
Cho a,b,c không âm. Chứng minh rằng :
a) a2 + b2 + c2 + 2abc + 2 > hoặc=ab +bc +ca +a+b+c
b)a2 + b2 +c2 +abc +4 > hoặc = 2(ab+bc+ca)
c) 3(a2 + b2 + c2) + abc +4 > hoặc =4 (ab+bc+ca)
d) 3(a2 + b2 + c2) + abc +80 > 4(ab+bc+ca) + 8(a+b+c)
cho a2 + b2 ≤ 1. Chứng minh rằng ( ac + bd - 1 )2 ≥ ( a2 + b2 - 1 )(c2 + d2 -1 )
Nếu \(c^2+d^2\ge1\left(bất.đẳng.thức.đúng\right)\)
Ta chứng minh c2+d2<1
+Đặt x=1-a2-b2 và y =1-c2 - d2
-0 \(\le x,y\le1\)
Bđt <=> (2 - 2ac - 2bd)2\(\ge\) 4xy <=> ((a-c)2+(b-d)2+x+y)2\(\ge4xy\)
=> ((a-c)2+(b-d)2 + x + y)2 \(\ge\left(x+y\right)^2\ge4xy\left(đpcm\right)\)
Chứng minh rằng: 1/ (ac + bd)2 + (ad - bc)2 = (a2 + b2)(c2 + d2)
2/ (a2 + b2)(c2 + d2) ≥ (ac + bd)2
\(1,\left(ac+bd\right)^2+\left(ad-bc\right)^2\\ =a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\\ =a^2c^2+b^2d^2+a^2d^2+b^2c^2\\ =\left(a^2c^2+a^2d^2\right)+\left(b^2d^2+b^2c^2\right)\\ =a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\\ =\left(a^2+b^2\right)\left(c^2+d^2\right)\)
2, \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
\(\Leftrightarrow a^2c^2+b^2c^2+a^2d^2+b^2d^2\ge a^2c^2+2abcd+b^2d^2\)
\(\Leftrightarrow b^2c^2-2abcd+a^2d^2\ge0\)
\(\Leftrightarrow\left(bc-ad\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow bc=ad\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
\(1\)/
⇔ \(\left(ac\right)^2+2abcd+\left(bd\right)^2+\left(ad\right)^2-2abcd+\left(bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
⇔\(a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
⇔\(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\) ⇒ \(\left(dpcm\right)\)
\(2\)/
⇔\(\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\ge\left(ac\right)^2+2abcd+\left(bd\right)^2\)
⇔\(\left(ad\right)^2-2abcd+\left(bc\right)^2\ge0\)
⇔\(\left(ad-bc\right)^2\ge0\left(đúng\right)\)
1/ \((ac + bd)^2 + (ad - bc)^2 = (ac)^2 + (bd)^2 + 2(ac)^2 (bd)^2 + (ad)^2 + (bc)^2 - 2(ad)^2 (bc)^2 \)
\(= (ac)^2 + (bd)^2 + 2(acbd)^2 + (ad)^2 + (bc)^2 - 2(adbc)^2 \)
\(= (ac)^2 + (bd)^2 + (ad)^2 + (bc)^2\)
\(= a^2 c^2 + b^2 c^2 + a^2 d^2 + b^2 d^2\)
\(= (a^2 + b^2)c^2 + (a^2 + b^2)d^2\)
\(= (a^2 + b^2)(c^2 + d^2)\)
➤ \((ac + bd)^2 + (ad - bc)^2 = (a^2 + b^2)(c^2 + d^2)\)
2/ \((a^2 + b^2)(c^2 + d^2) ≥ (ac + bd)^2 \)
↔ \((ac)^2 + (bc)^2 + (ad)^2 + (bd)^2 ≥ (ac)^2 + (bd)^2 + 2(ac)(bd)\)
↔\( (bc)^2 + (ad)^2 ≥ 2(acbd)\)
↔\( (bc)^2 + (ad)^2 - 2(bcad) ≥ 0\)
↔ \( (bc - ad)^2 ≥ 0 \) với mọi a,b,c và d
➤ \((a^2 + b^2)(c^2 + d^2) ≥ (ac + bd)^2 \) với mọi a,b,c,d
Chứng minh rằng
(a2+b2+c2)-(a2-b2-c2)2=4a2(b2+c2)
Chứng minh rằng: (a + b)( a 2 – ab + b 2 ) + (a – b)( a 2 + ab + b 2 ) = 2 a 3
Biến đổi vế trái ta có:
VT = (a + b)( a 2 – ab + b 2 ) + (a – b)( a 2 + ab + b 2 )
= a 3 + b 3 + a 3 – b 3 = 2 a 3 = VP
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Chứng minh rằng 4(a2+1)(b2+1)(c2+1)> hoặc = 3(a+b+c)^2
Bài này nâng cao ai làm dc thì trả lời hộ
Chứng minh rằng: a2 + b2 + c2 + d2 (>= lớn hơn hoặc bằng) ab+ac+ad
-Áp dụng BĐT AM-GM ta có:
\(\left\{{}\begin{matrix}\dfrac{1}{4}a^2+b^2\ge ab\\\dfrac{1}{4}a^2+c^2\ge ac\\\dfrac{1}{4}a^2+d^2\ge ad\end{matrix}\right.\)
-Cộng các vế, ta được:
\(\dfrac{3}{4}a^2+b^2+c^2+d^2\ge ab+ac+ad\)
\(\Rightarrow\dfrac{3}{4}a^2+b^2+c^2+d^2+\dfrac{1}{4}a^2\ge ab+ac+ad\) (vì \(\dfrac{1}{4}a^2\ge0\forall a\))
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge ab+ac+ad\left(đpcm\right)\)
-Dấu "=" xảy ra khi \(a=b=c=d=0\)
Chứng minh a2 + b2 lớn hơn hoặc bằng 1/2 với a+b lớn hơn hoặc bằng 1.
Áp dụng BĐT Bunhiacopski, ta có:
a2 + b2 >= (a + b)2/2 >= 12/2 = 1/2 (đpcm)
Dấu bằng xảy ra khi a = b = 1/2
Cho a và b là những số nguyên dương thỏa mãn ab + 1 chia hết cho a2 + b2 . Hãy chứng minh rằng: a2 + b2 / ab + 1 là bình phương của một số nguyên.
Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12