Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yeutoanhoc
Xem chi tiết
Đặng Khánh
5 tháng 6 2021 lúc 16:05

Áp dụng BĐT phụ \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)

\(A\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{1}{2}\left(1+\dfrac{4}{1}\right)^2=\dfrac{25}{2}\)

Dấu "=" \(x=y=\dfrac{1}{2}\)

Anh Thu
Xem chi tiết
Toru
28 tháng 8 2023 lúc 21:58

1) \(3x\left(x-1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(3x+5\right)\)

2) \(4x(x-2y)-8y(2y-x)\)

\(=4x\left(x-2y\right)+8y\left(x-2y\right)\)

\(=\left(4x+8y\right)\left(x-2y\right)\)

\(=4\left(x+2y\right)\left(x-2y\right)\)

3) \(a^2\left(x-1\right)+b^2\left(1-x\right)\)

\(=a^2\left(x-1\right)-b^2\left(x-1\right)\)

\(=\left(a^2-b^2\right)\left(x-1\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(x-1\right)\)

4) \(3x\left(x-a\right)+4a\left(a-x\right)\)

\(=3x\left(x-a\right)-4a\left(x-a\right)\)

\(=\left(x-a\right)\left(3x-4a\right)\)

5) \(5x\left(x-y\right)^2+10y^2\left(y-x\right)^2\)

\(=5x\left(x-y\right)^2+10y^2\left(x-y\right)^2\)

\(=\left(5x+10y^2\right)\left(x-y\right)^2\)

\(=5\left(x+2y^2\right)\left(x-y\right)^2\)

6) \(3x\left(x-3\right)^2+9\left(3-x\right)^2\)

\(=3x\left(x-3\right)^2+9\left(x-3\right)^2\)

\(=\left(3x+9\right)\left(x-3\right)^2\)

\(=3\left(x+3\right)\left(x-3\right)^2\)

7) \(x\left(m-a\right)^2-y\left(a-m\right)^2\)

\(=x\left(a-m\right)^2-y\left(a-m\right)^2\)

\(=\left(x-y\right)\left(a-m\right)^2\)

8) \(6y^2\left(x-1\right)^2+9y\left(1-x\right)^2\)

\(=6y^2\left(x-1\right)^2+9y\left(x-1\right)^2\)

\(=\left(6y^2+9x\right)\left(x-1\right)^2\)

\(=3\left(2y^2+3x\right)\left(x-1\right)^2\)

#Ayumu

Ngô Linh
Xem chi tiết
Linh Ngô
Xem chi tiết
Nguyễn Nam
21 tháng 11 2017 lúc 18:34

1)

\(\dfrac{7x-1}{2x^2+6x}=\dfrac{7x-12}{x\left(x+3\right)}\)

\(\dfrac{3-2x}{x^2-9}=\dfrac{3-2x}{\left(x-3\right)\left(x+3\right)}\)

MTC: \(x\left(x-3\right)\left(x+3\right)\)

\(\dfrac{7x-1}{2x^2+6x}=\dfrac{7x-12}{x\left(x+3\right)}=\dfrac{\left(x-3\right)\left(7x-12\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{7x^2-12x-21x+36}{x\left(x-3\right)\left(x+3\right)}=\dfrac{7x^2-33x+36}{x\left(x-3\right)\left(x+3\right)}\)

\(\dfrac{3-2x}{x^2-9}=\dfrac{3-2x}{\left(x-3\right)\left(x+3\right)}=\dfrac{ x\left(3-2x\right)}{x\left(x-3\right)\left(x+3\right)}\dfrac{3x-2x^2}{x\left(x-3\right)\left(x+3\right)}\)

2)

\(\dfrac{2x-1}{x-x^2}=\dfrac{2x-1}{x\left(1-x\right)}\)

\(\dfrac{x+1}{2-4x+2x^2}=\dfrac{x+1}{2\left(1-2x+x^2\right)}=\dfrac{x+1}{2\left(1-x\right)^2}\)

MTC: \(2x\left(1-x\right)^2\)

\(\dfrac{2x-1}{x-x^2}=\dfrac{2x-1}{x\left(1-x\right)}=\dfrac{2\left(1-x\right)\left(2x-1\right)}{2x\left(1-x\right)^2}=\dfrac{\left(2-2x\right)\left(2x-1\right)}{2x\left(1-x\right)^2}=\dfrac{4x-2-4x^2+2x}{2x\left(1-x\right)^2}=\dfrac{6x-2-4x^2}{2x\left(1-x\right)^2}\)

\(\dfrac{x+1}{2-4x+2x^2}=\dfrac{x+1}{2\left(1-2x+x^2\right)}=\dfrac{x+1}{2\left(1-x\right)^2}=\dfrac{ x\left(x+1\right)}{2x\left(1-x\right)^2}=\dfrac{x^2+x}{2x\left(1-x\right)^2}\)

Phương Trâm
21 tháng 11 2017 lúc 19:22

Phần còn lại nhé :v

3.

\(x^3+1=\left(x+1\right)\left(x^2-x+1\right)\)

\(x^2-x+1=x^2-x+1\)

\(x+1=x+1\)

MTC: \(\left(x+1\right)\left(x^2-x+1\right)\)

\(\dfrac{x-1}{x^3+1}=\dfrac{x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\dfrac{2x}{x^2-x+1}=\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\dfrac{2}{x+1}=\dfrac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

4.

\(5x\)

\(x-2y=x-2y=-\left(2y-x\right)\)

\(8y^2-2x^2=2\left(4y^2-x^2\right)=2\left(2y-x\right)\left(2y+x\right)\)

MTC: \(-10x\left(2y-x\right)\left(2y+x\right)\)

\(\dfrac{7}{5x}=\dfrac{7\left(2y-x\right)\left(2y+x\right)-2}{5x\left(2y-x\right)\left(2y+x\right)-2}=\dfrac{-14\left(2y-x\right)\left(2y+x\right)}{-10x\left(2y-x\right)\left(2y+x\right)}\)

\(\dfrac{4}{x-2y}=\dfrac{4\left(2y-x\right)\left(2y+x\right)10x}{-\left(2y-x\right)\left(2y+x\right)10x}=\dfrac{40x\left(2y-x\right)\left(2y+x\right)}{-10x\left(2y-x\right)\left(2y+x\right)}\)

\(\dfrac{x-y}{8y^2-2x^2}=\dfrac{\left(x-y\right)-5x}{2\left(2y-x\right)\left(2y+x\right)-5x}=\dfrac{-5x\left(x-y\right)}{-10x\left(2y-x\right)\left(2y+x\right)}\)

5.

\(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)

\(x^2-x=x\left(x-1\right)\)

\(x^2+x+1\)

MTC: \(x\left(x-1\right)\left(x^2+x+1\right)\)

\(\dfrac{x}{x^3-1}=\dfrac{x.x}{\left(x-1\right)\left(x^2+x+1\right)x}=\dfrac{x^2}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(\dfrac{x+1}{x^2-x}=\dfrac{\left(x+1\right)\left(x^2+x+1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(\dfrac{x-1}{x^2+x+1}=\dfrac{x\left(x-1\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x\left(x-1\right)^2}{x\left(x-1\right)\left(x^2+x+1\right)}\)

6.

\(x^2-2ax+a^2=\left(x-a\right)^2\)

\(x^2-ax=x\left(x-a\right)\)

MTC: \(x\left(x-a\right)^2\)

\(\dfrac{x}{x^2-2ax+a^2}=\dfrac{x.x}{\left(x-a\right)^2x}=\dfrac{x^2}{x\left(x-a\right)^2}\)

\(\dfrac{x+a}{x^2-ax}=\dfrac{\left(x+a\right)\left(x-a\right)}{x\left(x-a\right)\left(x-a\right)}=\dfrac{x^2-a^2}{x\left(x-a\right)^2}\)

nguyễn thị huy hoàng
Xem chi tiết
₮ØⱤ₴₮
13 tháng 10 2019 lúc 15:28

bạn ghi rõ đề ra được không

Nguyễn Lê Phước Thịnh
21 tháng 5 2022 lúc 11:00

a: \(=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right)\cdot\dfrac{2x^2-x^3}{x^2-3x}\)

\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)

\(=\dfrac{-4x^2-8x}{x+2}\cdot\dfrac{-x}{x-3}\)

\(=\dfrac{-4x\left(x+2\right)}{x+2}\cdot\dfrac{-x}{x-3}=\dfrac{4x^2}{x-3}\)

b: \(=\dfrac{2x-1}{2x+1}:\left(2x-1+\dfrac{2-4x}{2x+1}\right)\)

\(=\dfrac{2x-1}{2x+1}:\dfrac{4x^2-1+2-4x}{2x+1}\)

\(=\dfrac{2x-1}{4x^2-4x+1}=\dfrac{1}{2x-1}\)

c: \(=\left(\dfrac{1}{1-x}-1\right):\left(x+1-\dfrac{2x-1}{x-1}\right)\)

\(=\dfrac{1-1+x}{1-x}:\dfrac{x^2-1-2x+1}{x-1}\)

\(=\dfrac{-x}{x-1}\cdot\dfrac{x-1}{x\left(x-2\right)}=\dfrac{-1}{x-2}\)

trà my Đinh
Xem chi tiết
Đỗ Luật
Xem chi tiết
Nguyen Anh Duc
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 6 2023 lúc 22:18

1: =(8+a^3)(8-a^3)=64-a^6

2: =x^3-6x^2+12x-8-x(x^2-1)+6x^2-18x

=x^3-6x-8-x^3+x

=-5x-8

3: =x^3+3x^2+3x+1-x^3+1-3x^2-3x

=2

Bùi Phương Thảo
Xem chi tiết
Nguyễn Trần Linh Chi
21 tháng 8 2018 lúc 17:49

\(A=\dfrac{6x}{5x-20}-\dfrac{x}{x^2-8x+16}\)

\(ĐKXĐ:x\ne\pm4\)

\(\Leftrightarrow A=\dfrac{6x}{5\left(x-4\right)}-\dfrac{x}{\left(x-4\right)^2}\)

\(\Leftrightarrow A=\dfrac{6x^2-24x-5x}{5\left(x-4\right)^2}\)

\(\Leftrightarrow\dfrac{6x^2-29x}{5\left(x-4\right)^2}\)

\(\Leftrightarrow\dfrac{x\left(6x-29\right)}{5\left(x-4\right)^2}\)

Nguyễn Trần Linh Chi
22 tháng 8 2018 lúc 16:27

\(A=\left(\dfrac{x}{x-1}-\dfrac{x+1}{x}\right):\left(\dfrac{x}{x+1}-\dfrac{x-1}{x}\right)\)

\(ĐKXĐ:x\ne0;x\ne\pm1\)

\(\Leftrightarrow A=\left(\dfrac{x^2}{x\left(x-1\right)}-\dfrac{x^2-1}{x\left(x-1\right)}\right):\left(\dfrac{x^2}{x\left(x+1\right)}-\dfrac{x^2-1}{x\left(x+1\right)}\right)\)

\(\Leftrightarrow A=\dfrac{x\left(x+1\right)}{x\left(x-1\right)}\)

\(\Leftrightarrow A=\dfrac{x+1}{x-1}\)

Nguyễn Trần Linh Chi
22 tháng 8 2018 lúc 16:36

\(A=\left[\dfrac{6x+1}{x^2-6x}+\dfrac{6x-1}{x^2+6x}\right].\dfrac{x^2-36}{x^2+1}\)

\(ĐKXĐ:x\ne0;x\ne\pm6\)

\(\Leftrightarrow A=\left[\dfrac{6x+1}{x\left(x-6\right)}+\dfrac{6x-1}{x\left(x+6\right)}\right].\dfrac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)

\(\Leftrightarrow A=\left[\dfrac{\left(6x+1\right)\left(x+6\right)+\left(6x-1\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}\right].\dfrac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)

\(\Leftrightarrow A=\left[\dfrac{6x^2+37x+6+6x^2-37x+6}{x\left(x-6\right)\left(x+6\right)}\right].\dfrac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)

\(\Leftrightarrow A=\dfrac{12\left(x^2+1\right)}{x\left(x-6\right)\left(x+6\right)}.\dfrac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)

\(\Leftrightarrow A=\dfrac{12}{x}\)

Bùi Phương Thảo
Xem chi tiết
Toyama Kazuha
20 tháng 8 2018 lúc 19:32

đề là mô thế bợn ơi!!!!!!!!!!

Nguyễn Lê Phước Thịnh
25 tháng 8 2022 lúc 23:19

a: \(=\dfrac{6x}{5\left(x-4\right)}-\dfrac{x}{\left(x-4\right)^2}\)

\(=\dfrac{6x^2-24x-5x}{5\left(x-4\right)^2}=\dfrac{6x^2-29x}{5\left(x-4\right)^2}\)

b: \(=\dfrac{4}{x+2}+\dfrac{3}{x-2}-\dfrac{5x+2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2-2x+4}{x^3+8}\)

\(=\dfrac{4x-8+3x+6-5x-2}{\left(x+2\right)\left(x-2\right)}-\dfrac{1}{x+2}\)

\(=\dfrac{2x-2-x+2}{\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{x}{\left(x+2\right)\left(x-2\right)}\)

c: \(\left(\dfrac{x}{x-1}-\dfrac{x+1}{x}\right):\left(\dfrac{x}{x+1}-\dfrac{x-1}{x}\right)\)

\(=\dfrac{x^2-x^2+1}{x\left(x-1\right)}:\dfrac{x^2-x^2+1}{x\left(x+1\right)}\)

\(=\dfrac{x\left(x+1\right)}{x\left(x-1\right)}=\dfrac{x+1}{x-1}\)