Tìm giá trị lớn nhất của biểu thức P=|x+2023|-|2025-x|
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))
tìm giá trị lớn nhất của biểu thức :
P= -(x+4)-/x-y+1/+2023
a, cho x, y là 2 số thoả mãn (2x - y + 7)\(^{2022}\) + |x - 1|\(^{2023}\) ≤ 0. Tính giá trị của biểu thức: P = x\(^{2023}\) + (y - 10)\(^{2023}\)
b, Tìm số tự nhiên x, y biết 25 - y\(^2\) = 8(x = 2023)\(^2\)
c, Tìm giá trị nhỏ nhất của biểu thức: P = (|x - 3| + 2)\(^2\) + |y + 3| + 2019
d, Tìm cặp số nguyên x, y biết: (2 - x)(x + 1) = |y + 1|
a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)
\(\left|x-1\right|^{2023}>=0\forall x\)
=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)
mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)
=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)
\(P=x^{2023}+\left(y-10\right)^{2023}\)
\(=1^{2023}+\left(9-10\right)^{2023}\)
=1-1
=0
c: \(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
mà \(\left|y+3\right|>=0\forall y\)
nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)
=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-3=0
=>x=3 và y=3
Với x ϵ N, tìm giá trị lớn nhất của các biểu thức sau:
a, C = 2023.2021:(2-x)
b, D = 30:(2023-x)
Tìm giá trị nhỏ nhất của biểu thức M = x² + y² + xy - x + y + 2025.
Lời giải:
$M=x^2+y^2+xy-x+y+2025$
$2M=2x^2+2y^2+2xy-2x+2y+4050$
$=(x^2+2xy+y^2)+(x^2-2x+1)+(y^2+2y+1)+4048$
$=(x+y)^2+(x-1)^2+(y+1)^2+4048\geq 0+0+0+4048 = 4048$
$\Rightarrow M\geq 2024$
Vậy $M_{\min}=2024$
Giá trị này đạt tại $x+y=x-1=y+1=0$
$\Leftrightarrow x=1; y=-1$
tìm x
2/1.2+2/2.3+2/3.4+...............+2/x(x+1)=4028/2015
bài 2 cho 2 số x,y thỏa mãn 2(x^2+y^2)=2025
giá trị lớn nhất của x+y
baif3)biểu thức A=2(3x-1)^2+6(x+6)^2+4 đại giá trị lớn nhất tại x=?
2/1.2+2/2.3+2/3.4+...+2/x(x+1)=4028/2015
2(1/1.2+1/2.3+1/3.4+...+1/x(x+1))=4028/2015
2(1/1-1/2+1/2-1/3+1/3-1/4+....+1/x-1/x+1)=4028/2015
2(1-1/x+1)=4028/2015
1-1/x+1=2014/2015
(x+1-1)/x+1=2014/2015
x/x+1=2014/2015
(x+1).2014=2015x
2014x-2015x=-2014
-x=-2014
x=2014
Tìm giá trị nhỏ nhất của biểu thức A= x - \(6\sqrt{x}\) + 2023
A = x - 6√x + 2023
= x - 2.√x.3 + 9 + 2014
= (√x - 3)² + 2014
Do (√x - 3)² ≥ 0 với mọi x ∈ R
⇒ (√x - 3)² + 2014 ≥ 2014 với mọi x ∈ R
Vậy GTNN của A là 2014 khi x = 9
Cho các số x, y thỏa mãn đẳng thức \(5x^2+5y^2+8xy-2x+2y+2=0\). Tính giá trị của biểu thức
\(M=\left(x+y\right)^{2023}+\left(x-2\right)^{2024}+\left(y+1\right)^{2025}\)
\(5x^2+5y^2+8xy-2x+2y+2=0\)
=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
=>x=1 và y=-1
\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)
Cho 4x2 + 2y2 + 2z2 - 4xy - 4xz + 2yz - 10z -6y +34 = 0
Tính giá trị biểu thức M = (x-15)2023 + (y-8)2024 + (z-24)2025
Bạn xem lại phương trình ban đầu có đúng không vậy?