Viết phương trình đường tròn tâm I nằm trên đường thẳng d : x- y+1=0 và đi qua hai điểm A(2;1) và B (-1;-1)
trong mặt phẳng oxy, cho M(-1;1) , N(1;-3). Viết phương trình đường tròn đi qua hai điểm M,N và có tâm nằm trên đường thẳng d:2x-y+1=0
Gọi P là trung điểm MN \(\Rightarrow P\left(0;-1\right)\)
\(\overrightarrow{MN}=\left(2;-4\right)=2\left(1;-2\right)\Rightarrow\) trung trực của MN nhận (1;-2) là 1 vtpt
Phương trình trung trực MN:
\(1\left(x-0\right)-2\left(y+1\right)=0\Leftrightarrow x-2y-2=0\)
Gọi I là tâm đường tròn cần tìm \(\Rightarrow\) I là giao điểm của d và trung trực MN
Tọa độ I thỏa mãn: \(\left\{{}\begin{matrix}x-2y-2=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow I\left(-\dfrac{4}{3};-\dfrac{5}{3}\right)\)
\(\overrightarrow{IM}=\left(\dfrac{1}{3};\dfrac{8}{3}\right)\Rightarrow R^2=IM^2=\dfrac{65}{9}\)
Phương trình: \(\left(x+\dfrac{4}{3}\right)^2+\left(y+\dfrac{5}{3}\right)^2=\dfrac{65}{9}\)
Đường tròn có tâm nằm trên đường thẳng ∆1: x+y-3=0, đi qua điểm A(-1; 3) và tiếp xúc với đường thẳng ∆2: x-y+5=0 có phương trình là:
A. x 2 + y 2 - 4 x - 2 y - 8 = 0
B. x 2 + y 2 + x - 7 y + 12 = 0
C. x 2 + y 2 + 2 x + 2 y - 1 = 0
D. x 2 + y 2 2 x - 2 y + 9 = 0
Trong mặt phẳng Oxy, cho hai điểm A(1;-3),B(-3;1)
Viết phương trình đường tròn (C) đi qua hai điểm A,B và có tâm I năm trên đường thẳng d:2x+y+5=0
I nằm trên d nên I(x;-2x-5)
IA=IB=R
=>(x-1)^2+(-2x-5+3)^2=(x+3)^2+(-2x-5-1)^2
=>x^2-2x+1+4x^2+8x+4=x^2+6x+9+4x^2+24x+36
=>6x+5=30x+45
=>-24x=40
=>x=-5/3
=>I(-5/3;-5/3)
A(1;-3)
=>R=4/3*căn 5
=>(C): (x+5/3)^2+(y+5/3)^2=80/9
Đường tròn (C) đi qua hai điểm A( 1;3) và B( 3;1) và có tâm nằm trên đường thẳng d: 2x –y + 7= 0 có phương trình là:
A. (x- 3) 2+ ( y- 7) 2= 64
B.( x+ 7) 2+ (y+ 7) 2= 164
C.(x- 3) 2+ (y- 6) 2= 16
D. (x+ 3) 2+ (y-2)2= 81
Đáp án B
Gọi I (a; b) là tâm của đường tròn (C) do đó:
AI2 = BI2
Nên ( a-1) 2+ (b-3) 2 = (a-3) 2+ (b-1) 2
=> a= b (1)
Mà I( a; b) thuộc d: 2x- y + 7= 0 nên 2a – b+ 7= 0 (2)
Thay (1) vào (2) ta có: a= -7 => b= -7
Khi đó: R2= AI2= 164 .
Vậy phương trình (C) : ( x+ 7)2+ (y+7)2= 164 .
Lập phương trình đường tròn trong các trường hợp sau:
a) Có tâm \(I( - 2;4)\) và bán kính bằng 9
b) Có tâm \(I(1;2)\) và đi qua điểm \(A(4;5)\)
c) Đi qua hai điểm \(A(4;1),B(6;5)\) và có tâm nằm trên đường thẳng \(4x + y - 16 = 0\)
d) Đi qua gốc tọa độ và cắt 2 trục tọa độ tại các điểm có hoành độ a và tung độ là b
a) Ta có phương trình đường tròn là \(({C_1}):{\left( {x + 2} \right)^2} + {\left( {y - 4} \right)^2} = 81\)
b) Ta có: \(\overrightarrow {IA} = (3;3) \Rightarrow IA = 3\sqrt 2 = R\)
Suy ra phương trình đường tròn là; \({C_2}:{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 18\)
c) Vì tâm đường tròn nằm trên đường thẳng \(4x + y - 16 = 0\) nên có tọa độ \(I\left( {a;16 - 4a} \right)\)
Ta có: \(IA = \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {16 - 4a - 1} \right)}^2}} ,IB = \sqrt {{{\left( {a - 6} \right)}^2} + {{\left( {16 - 4a - 5} \right)}^2}} \)
A, B thuộc đường tròn nên \(IA = IB \Rightarrow \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {16 - 4a - 1} \right)}^2}} = \sqrt {{{\left( {a - 6} \right)}^2} + {{\left( {16 - 4a - 5} \right)}^2}} \)
\(\begin{array}{l} \Rightarrow {\left( {a - 4} \right)^2} + {\left( {16 - 4a - 1} \right)^2} = {\left( {a - 6} \right)^2} + {\left( {16 - 4a - 5} \right)^2}\\ \Rightarrow {\left( {a - 4} \right)^2} + {\left( {15 - 4a} \right)^2} = {\left( {a - 6} \right)^2} + {\left( {11 - 4a} \right)^2}\\ \Rightarrow - 28a = - 84 \Rightarrow a = 3\end{array}\)
Suy ra tâm đường tròn là \(I(3;4)\), bán kính \(R = IA = \sqrt {10} \)
Phương trình đường tròn trên là \(({C_3}):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} = 10\)
d) Giả sử phương trình đường tròn có dạng \({x^2} + {y^2} - 2mx - 2ny + p = 0\) (với tâm \(I(m;n),R = \sqrt {{m^2} + {n^2} - p} \))
Đường tròn đi qua gốc tọa độ và cắt 2 trục tọa độ tại các điểm có hoành độ a và tung độ là b nên ta có hệ phương trình:
Ta có điều kiện \(a,b \ne 0\), vì khi bằng 0 thì trùng với gốc tọa độ
\(\left\{ \begin{array}{l}{0^2} + {0^2} - 2m.0 - 2n.0 + p = 0\\{a^2} + {0^2} - 2ma - 2n.0 + p = 0\\{0^2} + {b^2} - 2m.0 - 2nb + p = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}p = 0\\{a^2} - 2ma = 0\\{b^2} - 2nb = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}p = 0\\m = \frac{a}{2}\\n = \frac{b}{2}\end{array} \right.\)
Vậy phương trình chính tắc của đường tròn trên là \({x^2} + {y^2} - ax - by = 0\)
1. viết phương trình đường tròn ngoại tiếp tam giác ABC biết A(-1,1);B(1,3);C(1,-1)
2. viết phương trình đường tròn có tâm I(-2,3) và đi qua M(2,-3)
3. viết phương trình đường tròn có tâm I nằm trên đường thẳng 4x-2y-8=0 biết đường tròn đó tiếp xúc với trục tọa độ
Trong mp Oxy, cho hai điểm A(-2;1),B(2;3) và đường thẳngv:x-2y-1=0. Viết phương trình đường tròn có tâm I nằm trên đường thăng :x-2y-1=0, đi qua A, B
Lời giải:
Do $I\in (x-2y-1=0)$ nên gọi tọa độ của $I$ là $(2a+1,a)$
Đường tròn đi qua 2 điểm $A,B$ nên: $IA^2=IB^2=R^2$
$\Leftrightarrow (2a+1+2)^2+(a-1)^2=(2a+1-2)^2+(a-3)^2=R^2$
$\Rightarrow a=0$ và $R^2=10$
Vậy PTĐTr là: $(x-1)^2+y^2=10$
Giả sử \(I=\left(2m+1;m\right)\)
Ta có: \(IA=IB\)
\(\Leftrightarrow\sqrt{\left(-2-2m-1\right)^2+\left(1-m\right)^2}=\sqrt{\left(2-2m-1\right)^2+\left(3-m\right)^2}\)
\(\Leftrightarrow4m^2+9+12m+m^2-2m+1=4m^2-4m+1+m^2-6m+9\)
\(\Leftrightarrow5m^2+10m+10=5m^2-10m+10\)
\(\Leftrightarrow m=0\)
\(\Rightarrow I=\left(1;0\right)\)
Bán kính \(R=\sqrt{\left(2-1\right)^2+3^2}=\sqrt{10}\)
Phương trình đường tròn: \(\left(x-1\right)^2+y^2=10\)
Đường tròn có tâm nằm trên đường thẳng ∆: x + y – 3 =0 và đi qua hai điểm A(-1; 3), B(1; 4) có phương là
A. x 2 + y 2 − x − 5 y − 4 = 0
B. x 2 + y 2 + x − 7 y + 4 = 0
C. x 2 + y 2 − x − 5 y + 4 = 0
D. x 2 + y 2 − 2 x − 4 y + 4 = 0
Do tâm nằm trên đường thẳng ∆: x +y – 3 = 0 nên tâm I(x; 3 – x). Mà đường tròn đi qua A(-1; 3), B(1;4) nên
I A 2 = I B 2 ⇔ x + 1 2 + − x 2 = x − 1 2 + − 1 − x 2
⇔ x 2 + 2 x + 1 + x 2 = x 2 − 2 x + 1 + 1 + 2 x + x 2 ⇔ 2 x 2 + 2 x + 1 = 2 x 2 + 2 ⇔ 2 x = 1 ⇔ x = 1 2
Tọa độ điểm I 1 2 ; 5 2
Bán kính I A = − 1 − 1 2 2 + 3 − 5 2 2 = 10 2
Phương trình đường tròn là x − 1 2 2 + y − 5 2 2 = 5 2 ⇔ x 2 + y 2 − x − 5 y + 4 = 0
ĐÁP ÁN C
a) viết phương trình đường tròn (C) có tâm I(2,3) đi qua điểm A(5,7) b) viết phương trình tiếp tuyến của đường tròn (C) : (x-1)^2 + ( y+5)^2 =4 . Biết tiếp tuyến song song với đường thẳng (d) 3x + 4y - 1 =0
a) Để tìm phương trình đường tròn © có tâm I(2,3) đi qua điểm A(5,7), ta sử dụng công thức khoảng cách từ điểm đến tâm đường tròn:
$I\hat{A} = \sqrt{(x_A - x_I)^2 + (y_A - y_I)^2}$
Với I là tâm đường tròn, A là điểm trên đường tròn.
Ta có: $x_I = 2$, $y_I = 3$, $x_A = 5$, $y_A = 7$
Thay vào công thức ta được:
$\sqrt{(5-2)^2 + (7-3)^2} = \sqrt{34}$
Vậy bán kính của đường tròn là $\sqrt{34}$.
Phương trình đường tròn © có tâm I(2,3) và bán kính $\sqrt{34}$ là:
$(x-2)^2 + (y-3)^2 = 34$
b) Để tìm phương trình tiếp tuyến của đường tròn © : $(x-1)^2 + ( y+5)^2 =4$, ta cần tìm đạo hàm của phương trình đường tròn tại điểm cần tìm tiếp tuyến.
Ta có phương trình đường tròn chính giữa:
$(x-1)^2 + (y+5)^2 = 2^2$
Đạo hàm hai vế theo x:
$2(x-1) + 2(y+5)y' = 0$
Suy ra:
$y' = -\frac{x-1}{y+5}$
Tại điểm M(x,y) trên đường tròn, ta có:
$(x-1)^2 + (y+5)^2 = 2^2$
Đạo hàm hai vế theo x:
$2(x-1) + 2(y+5)y' = 0$
Suy ra:
$y' = -\frac{x-1}{y+5}$
Vậy tại điểm M(x,y), phương trình tiếp tuyến của đường tròn là:
$y - y_M = y'(x-x_M)$
Thay $y'$ bằng $\frac{-(x-1)}{y+5}$ và $x_M$, $y_M$ bằng 1, -5 ta được:
$y + 5 = \frac{-(x-1)}{y+5}(x-1)$
Simplifying:
$x(y+5) + y(x-1) = 6$
Đường thẳng (d) có phương trình là $3x + 4y - 1 = 0$. Vì tiếp tuyến song song với đường thẳng (d) nên hệ số góc của tiếp tuyến