Những câu hỏi liên quan
Vũ Linh
Xem chi tiết
missing you =
5 tháng 2 2022 lúc 9:25

\(\Rightarrow\left(x+y+z\right)^2\ge\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2\ge3\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)=\dfrac{3\left(x+y+z\right)}{xyz}\Rightarrow x+y+z\ge\dfrac{3}{xyz}\)

\(x+y+z=\dfrac{x+y+z}{3}+\dfrac{2\left(x+y+z\right)}{3}\ge\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{2}{3}.\dfrac{3}{xyz}\ge\dfrac{1}{3}\left(\dfrac{9}{x+y+z}\right)+\dfrac{2}{xyz}=\dfrac{3}{x+y+z}+\dfrac{2}{xyz}\left(đpcm\right)\)

\(dấu"="xảy\) \(ra\Leftrightarrow x=y=z=1\)

Bình luận (0)
hello7156
Xem chi tiết
vvvvvvvv
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 5 2021 lúc 13:45

Đặt \(\left(x;y;z\right)=\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\Rightarrow abc=1\)

\(P=\dfrac{a^2bc}{b+c}+\dfrac{ab^2c}{c+a}+\dfrac{abc^2}{a+b}=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(P=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ac+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)
ILoveMath
Xem chi tiết
Baekhyun
Xem chi tiết
Nguyễn Quang Định
11 tháng 8 2017 lúc 20:31

Áp dụng BĐT Cauchy, ta có:

\(VT\ge3\sqrt[3]{\dfrac{x^2.y^2.z^2}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}=3\sqrt[3]{\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}\)

Ta có: xyz=1 và x,y,z >0

\(\Rightarrow x\le1\Rightarrow x+1\le2\Rightarrow\dfrac{1}{x+1}\ge\dfrac{1}{2}\)

Tương tự \(\dfrac{1}{y+1}\ge\dfrac{1}{2}\)

\(\dfrac{1}{z+1}\ge\dfrac{1}{2}\)

\(\Rightarrow VT\ge3\sqrt[3]{\dfrac{1}{x+1}.\dfrac{1}{y+1}.\dfrac{1}{z+1}}=\dfrac{3}{2}\)

Đẳng thức xảy ra khi x=y=z=1

Bình luận (0)
TFBoys
11 tháng 8 2017 lúc 20:36

Ta có \(x+y+z\ge3\sqrt[3]{xyz}=3.1=3\)

Theo BĐT Cauchy-Schwarz dạng Engel:

\(\dfrac{x^2}{y+1}+\dfrac{y^2}{z+1}+\dfrac{z^2}{x+1}\ge\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)+3}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)+\left(x+y+z\right)}=\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{y+1}=\dfrac{y}{z+1}=\dfrac{z}{x+1}\\xyz=1\end{matrix}\right.\)

\(\Leftrightarrow x=y=z=1\)

Bình luận (0)
hiền nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 4 2023 lúc 22:13

\(VT=\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=3+\dfrac{x^2+y^2}{z^2}+z^2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\)

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}>=2\cdot\sqrt{\dfrac{y^2}{x^2}\cdot\dfrac{x^2}{y^2}}=2\)

=>\(VT>=5+\left(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}\right)+\dfrac{15}{16}z^2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)

\(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}>=2\cdot\sqrt{\dfrac{x^2}{z^2}\cdot\dfrac{z^2}{16x^2}}=\dfrac{1}{2}\)

\(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}>=\dfrac{1}{2}\)

và \(\dfrac{1}{x^2}+\dfrac{1}{y^2}>=\dfrac{2}{xy}>=\dfrac{2}{\left(\dfrac{x+y}{2}\right)^2}=\dfrac{8}{\left(x+y\right)^2}\)

=>\(\dfrac{15}{16}z^2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)>=\dfrac{15}{16}z^2\cdot\dfrac{8}{\left(x+y\right)^2}=\dfrac{15}{2}\left(\dfrac{z}{x+y}\right)^2=\dfrac{15}{2}\)

=>VT>=5+1/2+1/2+15/2=27/2

Bình luận (0)
Phan Cả Phát
Xem chi tiết
Akai Haruma
24 tháng 5 2018 lúc 18:00

Lời giải:

Ta có: \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Mà theo BĐT Cauchy-Schwarz: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\)

Do đó: \(3\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3\)

-------

Ta có: \(\text{VT}=x-\frac{xz}{x^2+z}+y-\frac{xy}{y^2+x}+z-\frac{yz}{z^2+y}\)

\(=(x+y+z)-\left(\frac{xy}{y^2+x}+\frac{yz}{z^2+y}+\frac{xz}{x^2+z}\right)\)

\(\geq x+y+z-\frac{1}{2}\left(\frac{xy}{\sqrt{xy^2}}+\frac{yz}{\sqrt{z^2y}}+\frac{xz}{\sqrt{x^2z}}\right)\) (AM-GM)

\(=x+y+z-\frac{1}{2}(\sqrt{x}+\sqrt{y}+\sqrt{z})\)

Tiếp tục AM-GM: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\leq \frac{x+1}{2}+\frac{y+1}{2}+\frac{z+1}{2}=\frac{x+y+z+3}{2}\)

Suy ra:

\(\text{VT}\geq x+y+z-\frac{1}{2}.\frac{x+y+z+3}{2}=\frac{3}{4}(x+y+z)-\frac{3}{4}\)

\(\geq \frac{9}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z=1$

Bình luận (0)
phan thị minh anh
Xem chi tiết
Neet
28 tháng 5 2017 lúc 11:09

\(\sum\dfrac{x^4y}{x^2+1}=\sum\dfrac{x^3.\dfrac{1}{z}}{x^2+xyz}=\sum\dfrac{x^2}{z\left(x+yz\right)}=\sum\dfrac{x^2}{xz+1}\)

Áp dụng bất đẳng thức cauchy-schwarz:

\(Vt=\sum\dfrac{x^2}{xz+1}\ge\dfrac{\left(x+y+z\right)^2}{xy+yz+xz+3}\)

mà theo AM-GM: \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}=3\)

hay \(3\le xy+yz+xz\)

do đó \(VT\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\ge\dfrac{3\left(xy+yz+zx\right)}{2\left(xy+yz+xz\right)}=\dfrac{3}{2}\)

Dấu = xảy ra khi x=y=z=1

P/s: Câu này khoai

Bình luận (2)
Hoang Tran
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 8 2021 lúc 23:38

Giả thiết thiếu rồi em, chỗ \(\dfrac{1}{x+1}+...\) thiếu đoạn sau nữa

Bình luận (1)