x/2=y/3=z/5 và xyz=-30
$\dfrac{x}{2}$=$\dfrac{y}{3}$=$\dfrac{z}{5}$ và xyz = -30
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x.y.z}{2.3.5}=\dfrac{-30}{30}=-1\\ =>\left\{{}\begin{matrix}x=\left(-1\right).2=-2\\y=\left(-1\right).3=-3\\z=\left(-1\right).5=-5\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x.y.z}{2.3.5}=\dfrac{-30}{30}=-1\)
\(+)\)\(\dfrac{x}{2}=-1\Rightarrow x=-1\times2=-2\)
\(+)\)\(\dfrac{y}{3}=-1\Rightarrow y=-1\times3=-3\)
\(+)\)\(\dfrac{z}{5}=-1\Rightarrow z=-1\times5=-5\)
Tìm x,y,z biết:
a) x/2 = y/5 = z/7 và x + y + z =56
b) x/1,1 = y/1,3 = z/1,4 và 2x - y = 5,5
c)x-1 /2 = y+3 /4 = z-5 /6 và 5z - 3x - 4y = 50
d) x/2 = y/3 = z/5 và xyz = -30
Mk đang gấp . giúp mk vs.
a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7};x+y+z=56\)
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=4.5=20\\z=4.7=28\end{matrix}\right.\)
b) \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\left(1\right);2x-y=5,5\)
\(\left(1\right)\Rightarrow\dfrac{2x-y}{1,1.2-1,3}=\dfrac{5,5}{0,9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=1,1.\dfrac{5,5}{0,9}=\dfrac{6,05}{0,9}\\y=1,3.\dfrac{5,5}{0,9}=\dfrac{7,15}{0,9}\\z=\dfrac{1,4}{1,1}.x=\dfrac{1,4}{1,1}.\dfrac{6,05}{0,9}=\dfrac{8,47}{0,99}\end{matrix}\right.\)
d) \(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5};xyz=-30\)
\(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5}=\dfrac{xyz}{2.3.5}=\dfrac{-30}{30}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=3.\left(-1\right)=-3\\z=5.\left(-1\right)=-5\end{matrix}\right.\)
Bài 1:
x : 2 = y : 3 = z : 5 và xyz = 30
ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
mà xyz = 30 => 2k.3k.5k = 30 => 30.k3 = 30 => k3 = 1 => k = 1
=> x = 2k => x = 2
y = 3k => y = 3
z = 5k => z = 5
KL:...
x : 2 = y : 3 = z : 5 và x+ y+ z = 30
x = 6 : 2 = 3
y = 9 : 3 = 3
z = 15 : 5 = 3
6 : 2 = 9 : 3 = 15 : 5
hok tốt
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Leftrightarrow x=2k;y=3k;z=5k\)
Có \(xyz=30\Leftrightarrow2k.3k.5k=30\)
\(\Rightarrow30k^3=30\)
\(\Rightarrow k=1\)
\(\Rightarrow x=1.2=2\)
\(y=1.3=3\)
\(z=1.5=5\)
a, 7x = 5y và x + y = 24
b, x/2 = y/3 = Z/5 và xyz = -30
c, 6x = 4y = 3z và x + y +z = 18
a,7x=5y
=x/5=y/7
=x+y/5+7
=24/12
=2
b,x/2=y/3=z/5
=(x/2)3=(y/3)3=(z/5)3
=xyz/2.3.5
=-30/30
=-1
c,6x=4y=3z
=6x/12=4y/12=3z/12
=x/2=y/3=z/4
=x+y+z/2+3+4
=18/9
=2
k mik nha bn ^_^
Tìm x,y,z biết
1. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz=-30
2.\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(x^2+y^2-z^2\)=-12
3.\(\frac{x}{3}=\frac{y}{2}=\frac{z}{4}\)và xyz=192
tìm x;y;z biết:
a)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và xyz=-30
b)\(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}\) và x2+y2+z2=200
Đặt \(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}=kak\left(kak\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=4kak\\y=3kak\\z=5kak\end{cases}}\)
Mà \(x^2+y^2+z^2=200\)
\(\Leftrightarrow\left(4kak\right)^2+\left(3kak\right)^2+\left(5kak\right)^2=200\)
\(\Leftrightarrow16.kak^2+9.kak^2+25.kak^2=200\)
\(\Leftrightarrow kak^2.\left(16+9+25\right)=200\)
\(\Leftrightarrow kak^2.50=200\)
\(\Leftrightarrow kak^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}kak=2\\kak=-2\end{cases}}\)
+) Với \(kak=2\)thì \(\hept{\begin{cases}x=4kak=8\\y=3kak=6\\z=5kak=10\end{cases}}\)
+) Với \(kak=-2\)thì \(\hept{\begin{cases}x=4kak=-8\\y=3kak=-6\\z=5kak=-10\end{cases}}\)
Vậy ...
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Ta có : \(xyz=-30\)
\(\Leftrightarrow2k\times3k\times5k=-30\)
\(\Leftrightarrow30k^3=-30\)
\(\Leftrightarrow k^3=-1\)
\(\Leftrightarrow k=-1\)
Thay vào ta được :
\(\hept{\begin{cases}x=2k=-2\\y=3k=-3\\z=5k=-5\end{cases}}\)
Vậy ...
\(b,\frac{x}{4}=\frac{y}{3}=\frac{z}{5}\)
\(\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2+z^2}{16+9+25}\)
\(=\frac{200}{50}=4\)
\(\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{25}=4\)
Đến đây bn tính nốt nhé@_@
Tìm x, y, z
a) x/5 = y/2 và xy = 90
b) 4x = -5y và xy = -80
c) x/7 = y/-2 và x2y = -98
d) x/2 = y/3 = z/5 và xyz = -30
e) x/5 = y/2 = z/-3 và xyz = 240
a: Đặt x/5=y/2=k
=>x=5k;y=2k
Ta có: xy=90
\(\Leftrightarrow10k^2=90\)
\(\Leftrightarrow k^2=9\)
Trường hợp 1: k=3
=>x=15; y=6
Trường hợp 2: k=-3
=>x=-15; y=-6
b: 4x=-5y
nên \(\dfrac{x}{-5}=\dfrac{y}{4}=k\)
=>x=-5k; y=4k
xy=-80
\(\Leftrightarrow-20k^2=-80\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
=>x=-10; y=8
Trường hợp 2: k=-2
=>x=10; y=-8
c: Đặt x/7=y/-2=k
=>x=7k; y=-2k
\(x^2y=-98\)
\(\Leftrightarrow49k^2\cdot\left(-2k\right)=-98\)
=>k=1
=>x=7; y=-2
d: Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)
=>x=2k; y=3k; z=5k
Ta có: xyz=-30
\(\Leftrightarrow30k^3=-30\)
=>k=-1
=>x=-2; y=-3; z=-5
Tìm x,y,z
1. \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)và 5z-3x-4y=50
2.
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz =-30
xin lỗi mik ko bít câu này! Ngại quá!
a, 2x = 5y và xy = 250
b, \(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{4}\) và xyz = 192
c, x : y : z= 5: 2: (-3) và xyz = 240
a) \(2x=5y\)⇒\(x=\dfrac{5}{2}y\)⇒\(xy=\dfrac{5}{2}y^2\)
Thay \(xy=250\), ta có:
\(250=\dfrac{5}{2}y^2\)
⇒\(y^2=100\)⇒\(y=+-10\)
+) \(y=10\text{⇒}x=250:10=25\)
+) \(y=-10\text{⇒}x=250:-10=-25\)
\(a,2x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}=k\\ \Rightarrow x=5k;y=2k\\ xy=250\Rightarrow5k\cdot2k=250\Rightarrow k^2=25\Rightarrow\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=25;y=10\\x=-25;y=-10\end{matrix}\right.\\ b,\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{4}=a\Rightarrow x=3a;y=2a;z=4a\\ xyz=192\Rightarrow24a^3=192\Rightarrow a^3=8\Rightarrow a=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=4\\z=8\end{matrix}\right.\\ c,\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{-3}=q\Rightarrow x=5q;y=2q;z=-3q\\ xyz=240\Rightarrow-30q^3=240\Rightarrow q^3=-8\Rightarrow q=-2\\ \Rightarrow\left\{{}\begin{matrix}x=-10\\y=-4\\z=6\end{matrix}\right.\)
a. \(\left\{{}\begin{matrix}2x=5y\\xy=250\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-5y=0\\2xy=500\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2xy-5y^2=0\\2xy=500\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y^2=500\\2xy=500\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=10\\x=25\end{matrix}\right.\)