Cho tam giác ABC nhọn có 3 đường cao AM, BK, CN cắt nhau tại H
Cm: HK là tia phân giác của góc NKM
Cho tam giác abc có ba góc nhọn nội tiếp đường tròn (O). Hai đường cao AM và CN của tam giác ABC cắt nhau tại H. Gọi D và E là giao điểm thứ hai của tia AM và tia CN vs đườg tròn(O).chứng minh: a. Tứ giác BNHM nội tiếp b.BD=BE=BH c.ED//MN
a) Xét tứ giác BNHM có
\(\widehat{BNH}\) và \(\widehat{BMH}\) là hai góc đối
\(\widehat{BNH}+\widehat{BMH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BNHM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
cho tam giác ABC nhọn đường cao BM,CN cắt nhau tại H.AH cắt BC tại I. CMR: IA là tia phân giác của góc MIN
Cho tam giác ABC nhọn (AB<AC). Hai đường cao BK và CN cắt nhau tại H
a) Cm: Tam giác ABK ~ tam giác ACN và AB. AN= AC.AK
b) Cm: góc AKN = góc ABC
c) AH cắt BC tại Q. Cm NH là phân giác góc KNQ
giúp câu c với ạ
a: Xét ΔAKB vuông tại K và ΔANC vuông tại N có
góc KAB chung
=>ΔAKB đồng dạng với ANC
=>AK/AN=AB/AC
=>AK*AC=AB*AN và AK/AB=AN/AC
b: Xét ΔAKN và ΔABC có
AK/AB=AN/AC
góc KAN chung
=>ΔAKN đồng dạng với ΔABC
=>góc AKN=góc ABC
Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R). AH, BK là các đường cao của tam giác ABC. Các tia AH, BK lần lượt cắt (O) tại các điểm thứ 2 là D và E.
a) CM: ABHK là tứ giác nội tiếp.
b) Cho góc ACb = 70 độ, R = 5cm. Tính S quạt OAB?
c) CM: HK // DE.
Mọi người giúp mình câu c với. :<
a; Xét tam giác ABC nội tiếp (O,R) có AH,BK là 2đường cao => góc AHB=góc BKA=90.
Vì K và H là 2 đỉnh liên tiếp của tứ giác ABHK
=> tứ giác ABHK nội tiếp
b,Xét đường tròn (O,R) có góc ACB là góc nội tiếp chắn cung AB
LẠi có góc AOB là góc ở tâm chắn cung AB
=>sđ góc AOB=2 sđ góc ACB=2x70=140 độ
=> S quạt OAB=\(\pi\).R^2.n/360=\(\pi\).25.140/360=\(\pi\).175/18 cm2
c,
c, xét tam giác ABC nội tiếp (O,R) có góc BED là góc nội tiếp chắn cung BD
Lại có tứ giác ABHK nội tiếp (cmt) nên góc BKH= góc BAH (cùng chắn cung BH)
Có góc BAD là góc nội tiếp chắn cung BD=> góc BAD=góc BED(cùng chắn cung BD)
=> góc BED=góc BKH mà 2 góc này ở vị trí đồng vị => HK song song DE
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm . Hai đường cao AM và CF của tam giác ABC cắt nhau tại H và cắt (O) lần lượt tại Q và D. Chứng minh:
a. BFHM nội tiếp
b. ACMF nội tiếp
c. BC là tia phân giác của HBQ
a: góc BFH+góc BMH=180 độ
=>BFHM nội tiếp
b: góc AMC=góc AFC=90 độ
=>AFMC nội tiếp
Cho tam giác ABC, có 3 góc nhọn, các đường cao AH, BK. Phân giác của góc HAC cắt BK tại M, cắt BC tại N. Tia phân giác của góc KBC cắt AH tại P và AC tại Q. CMR:
a, AN vuông góc BQ.
b, Tứ giác PMQN là hình gì? Vì sao?
a, Góc C + góc KBC = 90 độ, góc C + HAC=90 độ nên góc HBP= góc NAH
HBP+HPB=90 độ, HPB=APQ (đối đỉnh) nên NAH+APQ=90 độ nên AN vuông góc với BQ
b, Tam giác APQ có đường cao cũng là đường phân giác nên tamg giác PAQ cân do đó AN cũng là đường trung trục của tam giác APQ, nên MP=MQ, tương tự sẽ có NP=MP=NP=MQ
do đó MPNQ là hình vuông
Ai tick cho phan hong phuc mà điểm tăng nhanh quá zậy
Cho tam giác ABC nhọn cân tại A.Hai đường cao BK và CE cắt nhau tại H. a)Chứng minh tam giác AEC=tam giác AKB b)Kẻ BG vuông góc với BC (G thuộc EK) c)Kẻ Ax song song với BC cắt BK tại M.Trên tia đối của tia AM lấy điểm Q sao cho AM=AQ.Chứng minh C;E;Q thẳng hàng
a) Xét ΔAEC vuông tại E và ΔAKB vuông tại K có
AC=AB(ΔABC cân tại A)
\(\widehat{EAC}\) chung
Do đó: ΔAEC=ΔAKB(cạnh huyền-góc nhọn)
Cho tam giác ABC nhọn cân tại A.Hai đường cao BK và CE cắt nhau tại H. a)Chứng minh tam giác AEC=tam giác AKB b)Kẻ BG vuông góc với BC (G thuộc EK) c)Kẻ Ax song song với BC cắt BK tại M.Trên tia đối của tia AM lấy điểm Q sao cho AM=AQ.Chứng minh C;E;Q thẳng hàng
a) Xét ΔAEC vuông tại E và ΔAKB vuông tại K có
AC=AB(ΔABC cân tại A)
\(\widehat{BAK}\) chung
Do đó: ΔAEC=ΔAKB(cạnh huyền-góc nhọn)
Cho tam giác ABC nhọn, có hai đường cao BM và CN cắt nhau tại H.
a) CMR: AM. AC = AN. AB
b) Chứng minh hai tam giác AMN và ABC đồng dạng
c) Gọi P là giao điểm của AH với BC. CMR: PH là phân giác của góc MPN
d) Đường thẳng MN cắt BC tại D. CMR: DN. PM = DM. PN
a: Xet ΔAMB vuông tại M và ΔANC vuông tại N có
góc MAB chung
=>ΔAMB đồng dạng với ΔANC
=>AM/AN=AB/AC
=>AM*AC=AN*AB; AM/AB=AN/AC
b: Xet ΔAMN và ΔABC co
AM/AB=AN/AC
góc A chung
=>ΔAMN đồng dạng với ΔABC
c: góc MPH=góc ACN
góc NPH=góc ABM
góc ACN=góc ABM
=>góc MPH=góc NPH
=>PH là phân giác củagóc MPN