Bài 4: Cho đường tròn (O) dây BC cố định không đi qua tâm O. Trên cung lớn BC lấy điểm A sao cho AB
Bài 4: Cho đường tròn (O) dây BC cố định không đi qua tâm O. Trên cung lớn BC lấy điểm A sao cho AB<AC. Kẻ đường phân giác của góc BAC cắt đường tròn tại điểm thứ 2 M. Từ M kẻ MD vuông góc đường thẳng AB(D thuộc AB), ME vuông góc đường thẳng AC (E thuộc AC), MI vuông góc đường thẳng BC( I thuộc BC). Gọi Q là giao điểm của AM và BC. C/m rằng
1) tứ giác MIEC nội tiếp
2) MC bình= MQ.MA
3)góc ECM = góc DIM và 3 điểm D,I,E thảng hàng
1: góc MIC+góc MEC=180 độ
=>MICE nội tiếp
2: Xét ΔMCQ và ΔMAC có
góc MCQ=góc MAC
góc CMQ chung
=>ΔMCQ đồng dạng với ΔMAC
=>MC^2=MQ*MA
Bài 4: Cho đường tròn (O) dây BC cố định không đi qua tâm O. Trên cung lớn BC lấy điểm A sao cho AB<AC. Kẻ đường phân giác của góc BAC cắt đường tròn tại điểm thứ 2 M. Từ M kẻ MD vuông góc đường thẳng AB(D thuộc AB), ME vuông góc đường thẳng AC (E thuộc AC), MI vuông góc đường thẳng BC( I thuộc BC). Gọi Q là giao điểm của AM và BC. C/m rằng
1) tứ giác MIEC nội tiếp
2) MC bình= MQ.MA
1: góc MIC=góc MEC=90 độ
=>MIEC nội tiếp
2: Xet ΔMCQ và ΔMAC có
góc MCQ=góc MAC
góc CMQ chung
=>ΔMCQ đồng dạng với ΔMAC
=>MC/MA=MQ/MC
=>MC^2=MQ*MA
Trên đường tròn (O) dựng dây BC không đi qua tâm. Trên tia đối của tia BC. Lấy điểm M. Đường thẳng đi qua M cắt đường tròn (O) lần lượt tại N và P, sao cho O nằm trong góc PMC. Trên cung nhỏ NP lấy điểm A sao cho cung AN bằng cung AP. Nối AB và AC lần lượt cắt NP ở D và E. Chứng minh rằng:
a) Góc ADE= Góc ACB.
b) Tứ giác BDEC nội tiếp.
c) MB.MC=MN.NP.
d) Nối OK cắt NP tại K. Chứng minh MK2>MB.MC
giải chi tiết giúp mk vs! mk đang cần gấp
a: Xét ΔAPE và ΔACP có
góc APE=góc ACP
góc PAE chung
=>ΔAPE đồng dạng với ΔACP
=>AP^2=AE*AC=AN^2
Xét ΔAND và ΔABN có
góc AND=góc ABN
góc NAD chung
=>ΔAND đồng dạng với ΔABN
=>AD*AB=AN^2
=>AD*AB=AE*AC
=>AD/AC=AE/ABB
=>ΔADE đồng dạng vơi ΔACB
=>góc ADE=góc ACB
b: góc ADE=góc ACB
=>góc BDE+góc BCE=180 độ
=>BDEC nội tiếp
Cho (O;R) và dây cung AB cố định không đi qua tâm O; 2 điểm C, D di động trên cung lớn AB sao cho AD//BC. Gọi M là giao điểm của AC và BD.
a) Chứng minh \(MO⊥AD\)
b) Chứng minh điểm M luôn nằm trên đường tròn cố định
c) Chứng minh đường thẳng đi qua M và // với AD luôn đi qua một điểm cố định I. Tính IO theo R và AB=R
Cho đường tròn (O; R) có dây BC cố định không đi qua tâm. Trên cung lớn BC lấy điểm A sao cho tam giác ABC nhọn. Đường cao BM và CN của tam giác ABC cắt nhau tại H.
a) Chứng minh rằng tứ giác ANHM nội tiếp
b) Chứng minh rằng : BN.BA + CM. CA = BC2
a: Xét tứ giác ANHM có
\(\widehat{ANH}+\widehat{AMH}=180^0\)
Do đó: ANHM là tứ giác nội tiếp
b: Xét ΔBNH vuông tại N và ΔBMA vuông tại M có
\(\widehat{NBH}\) chung
Do đó: ΔBNH∼ΔBMA
Suy ra: BN/BM=BH/BA
hay \(BN\cdot BA=BH\cdot BM\)
Xét ΔCMH vuông tại M và ΔCNA vuông tại N có
\(\widehat{MCH}\) chung
Do đó: ΔCMH∼ΔCNA
Suy ra: CM/CN=CH/CA
hay \(CM\cdot CA=CH\cdot CN\)
\(BN\cdot BA+CM\cdot CA=BM\cdot BM+CH\cdot CN=BC^2\)
cho đường tròn (O;R) có BC là dây cố định (BC<2R) ; E là điểm chính giữa cung nhỏ BC. gọi A là điểm di động trên cung lớn BC và AB<AC (A khác B). trên đoạn AC lấy điểm D khác C sao cho ED=EC. tia BD cắt đường tròn (O;R) tại điểm thứ hai là F.
a) chứng minh D là trực tâm của tam giác AEF.
b) gọi H là trực tâm tam giác DEC ; DH cắt BC tại N. đường tròn ngoại tiếp tam giác BDN cắt đường tròn (O;R) tại điểm thứ hai là M. chứng minh đường thẳng DM luôn đi qua một điểm cố định.
a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.
Bổ đề chứng minh rất đơn giản, không trình bày ở đây.
Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E
Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE
Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD
Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC
Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).
b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI
Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900
Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)
Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC
Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).
Cho đường tròn (O;R) và dây cung AB cố định không đi qua tâm O; C và D là hai điểm di động trên cung lớn AB sao cho AD và BC luôn song song với nhau. Gọi M là giao điểm của AC và BD . Chứng minh rằng:
1) , suy ra AOMB là tứ giác nội tiếp.
2)
3) Đường thẳng d đi qua M và song song với AD luôn đi qua một điểm cố định.
Cho đường tròn (O;R) với dây BC cố định (BC không đi qua tâm). Qua O dựng bán kính OA vuông góc với dây BC tại I. Lấy điểm E thuộc cung lớn BC. Nối AE cắt BC tại D. Hạ CH vuông góc với AE tại H, CH cắt EB tại M
a. Cm: 4 điểm A,I,H,C cùng thuộc một đường tròn
b. Cm: AD.AE=AB²
a: góc AIC=góc AHC=90 độ
=>AIHC nội tiếp
b: Xét ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chung
=>ΔABD đồng dạng với ΔAEB
=>AB^2=AD*AE
Cho đường tròn (O; R), dây BC cố định không đi qua O. Trên cung lớn BC lấy A sao cho tam giác ABC nhọn, AB<AC. Các đường cao AD, BE, CF của tam giác ABC giao nhau tại H. Lấy S đối xứng với A qua EF, K đối xứng với A qua O.
a) CMR B, F, E, C cùng thuộc một đường tròn (đã làm)
b) Trung trực AB cắt đường thẳng song song EF đi qua A tại N. NK cắt đường tròn tại L khác K. CMR NB là tiếp tuyến đường tròn (O).
c) CMR khi A di chuyển trên cung lớn BC thì (BK.AL)/ BL không thay đổi và đường tròn ngoại tiếp của tam giác HDS cố định.
MONG NHẬN ĐƯỢC SỰ GIÚP ĐỠ TỪ CÁC VỊ CAO NHÂN
Mấy bạn cố gắng giải hết bài giùm mình nha. Mình cảm ơn nhiều !!!
b) \(\widehat{NAB}=\widehat{AFE}=\widehat{ACB}\) nên NA là tiếp tuyến của (O).
Do O, N nằm trên đường trung trực của AB nên A, B đối xứng với nhau qua ON.
Từ đó NB là tiếp tuyến của (O).
c) Do NA là tiếp tuyến của (O) nên \(\Delta NAL\sim\Delta NKA(g.g)\)
\(\Rightarrow\dfrac{NA}{NK}=\dfrac{AL}{KA}=\dfrac{NL}{NA}\Rightarrow\left(\dfrac{AL}{KA}\right)^2=\dfrac{NA}{NK}.\dfrac{NL}{NA}=\dfrac{NL}{NK}\).
Tương tự do NB là tiếp tuyến của (O) nên \(\left(\dfrac{BL}{KB}\right)^2=\dfrac{NL}{NK}\Rightarrow\left(\dfrac{AL}{KA}\right)^2=\left(\dfrac{BL}{KB}\right)^2\Rightarrow\dfrac{AL}{KA}=\dfrac{BL}{KB}\Rightarrow\dfrac{AL}{BL}=\dfrac{KA}{KB}=\dfrac{2R}{KB}\).
Từ đó \(\dfrac{BK.AL}{BL}=2R\) không đổi \(\).
Sửa lại đề là đường tròn (HDS) đi qua một điểm cố định.
Ta có \(\widehat{ASE}=\widehat{EAS}=\widehat{OCA}\) nên tứ giác OECS nội tiếp. Từ đó \(AO.AS=AE.AC=AH.AD\). Suy ra tứ giác OHDS nội tiếp nên đường tròn ngoại tiếp tam giác HDS đi qua O cố định