Bài 4: Cho đường tròn (O) dây BC cố định không đi qua tâm O. Trên cung lớn BC lấy điểm A sao cho AB<AC. Kẻ đường phân giác của góc BAC cắt đường tròn tại điểm thứ 2 M. Từ M kẻ MD vuông góc đường thẳng AB(D thuộc AB), ME vuông góc đường thẳng AC (E thuộc AC), MI vuông góc đường thẳng BC( I thuộc BC). Gọi Q là giao điểm của AM và BC. C/m rằng
1) tứ giác MIEC nội tiếp
2) MC bình= MQ.MA
Cho (O;R) và dây cung AB cố định không đi qua tâm O; 2 điểm C, D di động trên cung lớn AB sao cho AD//BC. Gọi M là giao điểm của AC và BD.
a) Chứng minh \(MO⊥AD\)
b) Chứng minh điểm M luôn nằm trên đường tròn cố định
c) Chứng minh đường thẳng đi qua M và // với AD luôn đi qua một điểm cố định I. Tính IO theo R và AB=R
cho đường tròn (O;R) có BC là dây cố định (BC<2R) ; E là điểm chính giữa cung nhỏ BC. gọi A là điểm di động trên cung lớn BC và AB<AC (A khác B). trên đoạn AC lấy điểm D khác C sao cho ED=EC. tia BD cắt đường tròn (O;R) tại điểm thứ hai là F.
a) chứng minh D là trực tâm của tam giác AEF.
b) gọi H là trực tâm tam giác DEC ; DH cắt BC tại N. đường tròn ngoại tiếp tam giác BDN cắt đường tròn (O;R) tại điểm thứ hai là M. chứng minh đường thẳng DM luôn đi qua một điểm cố định.
Cho đường tròn (O;R) và dây cung AB cố định không đi qua tâm O; C và D là hai điểm di động trên cung lớn AB sao cho AD và BC luôn song song với nhau. Gọi M là giao điểm của AC và BD . Chứng minh rằng:
1) , suy ra AOMB là tứ giác nội tiếp.
2)
3) Đường thẳng d đi qua M và song song với AD luôn đi qua một điểm cố định.
Cho đường tròn (O;R) với dây BC cố định (BC không đi qua tâm). Qua O dựng bán kính OA vuông góc với dây BC tại I. Lấy điểm E thuộc cung lớn BC. Nối AE cắt BC tại D. Hạ CH vuông góc với AE tại H, CH cắt EB tại M
a. Cm: 4 điểm A,I,H,C cùng thuộc một đường tròn
b. Cm: AD.AE=AB²
Cho đường tròn (O; R), dây BC cố định không đi qua O. Trên cung lớn BC lấy A sao cho tam giác ABC nhọn, AB<AC. Các đường cao AD, BE, CF của tam giác ABC giao nhau tại H. Lấy S đối xứng với A qua EF, K đối xứng với A qua O.
a) CMR B, F, E, C cùng thuộc một đường tròn (đã làm)
b) Trung trực AB cắt đường thẳng song song EF đi qua A tại N. NK cắt đường tròn tại L khác K. CMR NB là tiếp tuyến đường tròn (O).
c) CMR khi A di chuyển trên cung lớn BC thì (BK.AL)/ BL không thay đổi và đường tròn ngoại tiếp của tam giác HDS cố định.
MONG NHẬN ĐƯỢC SỰ GIÚP ĐỠ TỪ CÁC VỊ CAO NHÂN
Mấy bạn cố gắng giải hết bài giùm mình nha. Mình cảm ơn nhiều !!!
Cho (o) và dây BC cố định không đi qua tâm. Lấy điểm A bất kỳ thuộc cung lớn BC. Gọi H là giao điểm của các đường cao BD và CE của tam giác? ABC. a, cm tg BCDE nt b kẻ tia Ax song song với ED (tia Ax nằm khác phía với điểm C bờ AB). Cm tia Ax là tiếp tuyến của đg tròn tâm O c, gọi I là giao điểm của O qua BC. Cm tỉ số AH/ OI luôn không đổi khi A di chuyển trên cung lớn BC
Cho đường tròn tâm O và dây BC không đi qua O. Điểm A chuyển động rên cung lớn . Vẽ đường tròn tâm I đi qua điểm B và tiếp xúc với AC tại A. Vẽ đường tròn tâm K đi qua điểm C và tiếp xúc với AB tại A.CMR:
a) 4 điểm B,D,O,C cùng thuộc 1 đường tròn.
b) Đường thẳng AD luôn đi qua 1 điểm cố định.
Cho đường tròn tâm O bán kính R và 1 dây cung BC cố định. A là điểm di động trên cung lớn BC. Gọi I là trung điểm AC.
a/ Chứng minh: I di động trên 1 đường tròn cố định
b/ Qua I vẽ đường thẳnd vuông góc với AB. Chứng minh: d luôn đi qua 1 điểm cố định
c/ Xác định vị trí A để diện tích tam giác ABC lớn nhất
d/ Trong tâm G tam giác ABC di động trên 1 đường cố định