Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thùy linh
Xem chi tiết
Thắng Nguyễn
17 tháng 2 2017 lúc 23:01

đề đúng ko v

nguyễn thùy linh
17 tháng 2 2017 lúc 23:10

đúng đó bạn ạ

nguyễn thùy linh
17 tháng 2 2017 lúc 23:12

úi lộn k phải 3mà là 3x^2

nguyễn thùy linh
Xem chi tiết
nguyễn thùy linh
Xem chi tiết
alibaba nguyễn
19 tháng 2 2017 lúc 17:26

Ta có:

\(\left(x-y\right)^2+\left(x-z\right)^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(x+y+z\right)^2\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2xz+z^2+x^2+y^2+z^2+2\left(xy+yz+xz\right)\ge A^2\)

\(\Leftrightarrow A^2\le2\left(y^2+yz+z^2\right)+3x^2=36\)

\(\Leftrightarrow-6\le A\le6\) 

Thắng Nguyễn
18 tháng 2 2017 lúc 23:29

min=-6 khi x=y=z=-2

max=6 khi x=y=z=2

gl !!

nguyễn thùy linh
19 tháng 2 2017 lúc 11:10

giải thế nào vậy ban

Quang Đẹp Trai
Xem chi tiết
Nguyễn Tuấn Khôi
Xem chi tiết
ʚĭɞ Thị Quyên ʚĭɞ
Xem chi tiết
Akai Haruma
16 tháng 1 2017 lúc 21:27

Lời giải:

ĐKĐB \(\Leftrightarrow \frac{3x^2}{2}+y^2+yz+z^2=1\)

Áp dụng BĐT Am-Gm ta có \(yz\leq \left (\frac{y+z}{2}\right)^2\)

\(\Rightarrow 1=\frac{3x^2}{2}+y^2+yz+z^2=\frac{3x^2}{2}+(y+z)^2-yz\geq \frac{3x^2}{2}+\frac{3(y+z)^2}{4}\)

\(\Leftrightarrow \frac{2}{3}\geq x^2+\frac{(y+z)^2}{2}\)

Áp dụng BĐT Cauchy- Schwarz: \(3\left [x^2+\frac{(y+z)^2}{2}\right]=\left [x^2+\frac{(y+z)^2}{2}\right](1+2)\geq (x+y+z)^2\)

\(\Rightarrow 2\geq 3\left [x^2+\frac{(y+z)^2}{2}\right]\geq (x+y+z)^2\Rightarrow -\sqrt{2}\leq x+y+z\leq \sqrt{2}\)

Vậy

\(x+y+z (\max)=\sqrt{2}\Leftrightarrow (x,y,z)=\left (\frac{\sqrt{2}}{3},\frac{\sqrt{2}}{3},\frac{\sqrt{2}}{3}\right)\)

\(x+y+z(\min)=-\sqrt{2}\Leftrightarrow (x,y,z)=\left(\frac{-\sqrt{2}}{3},\frac{-\sqrt{2}}{3},\frac{-\sqrt{2}}{3}\right)\)

༄NguyễnTrungNghĩa༄༂
Xem chi tiết
Con Chim 7 Màu
25 tháng 5 2019 lúc 15:00

Áp dụng BĐT Cauchy=Schwarz ta có:

\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\Rightarrow x+y+z\le\sqrt{3}\)

Ta lại có:\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)\ge0\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow A\le\sqrt{3}+1\)

Dấu '=' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

tth_new
29 tháng 5 2019 lúc 7:58

Em làm lại,cách này mà còn sai nữa thì em xin hàng ạ! Dù sao đi nữa cũng xin mọi người chịu khó góp ý giúp em để em càng ngày càng tiến bộ hơn nữa ạ! Thanks all !

*Tìm min

Đặt p = x + y + z; q = xy + yz + zx thì \(x^2+y^2+z^2=p^2-2q=1\Rightarrow q=\frac{p^2-1}{2}\)

Suy ra \(A=p+q=p+\frac{p^2-1}{2}=\frac{p^2+2p-1}{2}\)

\(=\frac{p^2+2p+1-2}{2}=\frac{\left(p+1\right)^2-2}{2}\ge-\frac{2}{2}=-1\)

Vậy giá trị nhỏ nhất của A là -1.

Dấu "=" xảy ra khi (x;y;z) = (0;0;-1) (chỗ này em không biết giải rõ thế nào nữa :v)

*Tìm max

Ta có BĐT sau: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\le x^2+y^2+z^2\)

Suy ra \(q\le\frac{p^2}{3}\le p^2-2q=1\) suy ra \(\hept{\begin{cases}q\le p^2-2q=1\\p^2\le3\left(p^2-2q\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}q\le1\\p\le\sqrt{3\left(p^2-2q\right)}=\sqrt{3}\end{cases}}\)

Suy ra \(A=p+q\le\sqrt{3}+1\)

Thanh Tùng DZ
25 tháng 5 2019 lúc 14:58

Ta có : 

\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)\(y^2+z^2\ge2\sqrt{y^2z^2}=2yz\)\(x^2+z^2\ge2\sqrt{x^2z^2}=2xz\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)

hay \(xy+yz+xz\le1\)

Mặt khác : \(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)nên \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

hay \(2\left(x+y+z\right)\le4\)\(\Rightarrow x+y+z\le2\)

\(\Rightarrow A=x+y+z+xy+yz+xz\le2+1=3\)

hình như làm thế này sai thì phải

Nguyễn Hoàng Vũ
Xem chi tiết
Lương Khánh Nhật Minh
17 tháng 4 2022 lúc 0:42

1. 1/x + 2/1-x = (1/x - 1) + (2/1-x - 2) + 3

= 1-x/x + (2-2(1-x))/1-x  + 3

= 1-x/x + 2x/1-x + 3    >= 2√2 + 3

Dấu "=" xảy ra khi x =√2 - 1

Lương Khánh Nhật Minh
17 tháng 4 2022 lúc 0:48

2. a = √z-1, b = √x-2, c = √y-3 (a,b,c >=0)

=> P = √z-1 / z + √x-2 / x + √y-3 / y 

= a/a^2+1 + b/b^2+2 + c/c^2+3

a^2+1 >= 2a              => a/a^2+1 <= 1/2

b^2+2 >= 2√2 b          => b/b^2+2 <= 1/2√2

c^2+3 >= 2√3 c            => c/c^2+3 <= 1/2√3

=> P <= 1/2 + 1/2√2 + 1/2√3

Dấu = xảy ra khi a^2 = 1, b^2 = 2, c^2 =3

<=> z-1 = 1, x-2 = 2, y-3 = 3

<=> x=4, y=6, z=2

Kan
Xem chi tiết