Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
YoonBum
Xem chi tiết
Nguyễn Minh Hằng
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 11 2021 lúc 17:25

\(a,\Leftrightarrow x^3-8-x^3-2x=12\Leftrightarrow-2x=20\Leftrightarrow x=-10\\ b,\Leftrightarrow x^2-6x+9-x^2+4=16\Leftrightarrow=-6x=3\Leftrightarrow x=-\dfrac{1}{2}\\ c,\Leftrightarrow x\left(x^2-9\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-6\right)+9\left(x-6\right)=0\\ \Leftrightarrow\left(x^2+9\right)\left(x-6\right)=0\\ \Leftrightarrow x=6\left(x^2+9>0\right)\)

Tạ Thu Hương
Xem chi tiết
Nguyễn Thanh Hằng
2 tháng 8 2020 lúc 9:22

a/ \(x^2-3x+xy-3y\)

\(=x\left(x-3\right)+y\left(x-3\right)\)

\(=\left(x+y\right)\left(x-3\right)\)

Vậy...

b/ \(x^4-9x^3+x^2-9x\)

\(=x^3\left(x-9\right)+x\left(x-9\right)\)

\(=\left(x-9\right)\left(x^3+x\right)\)

\(=x\left(x-9\right)\left(x^2+1\right)\)

Vậy...

c/ \(x^3-4x^2-9x+36\)

\(=x^2\left(x-4\right)-9\left(x-4\right)\)

\(=\left(x^2-9\right)\left(x-4\right)\)

\(=\left(x-3\right)\left(x+3\right)\left(x-4\right)\)

Vậy...

d/ \(x^3+2x^2+2x+1\)

\(=\left(x^3+1\right)+\left(2x^2+2x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

Vậy...

f/ \(x^3-4x^2+12x-27\)

\(=\left(x^3-27\right)-\left(4x^2-12x\right)\)

\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

Vậy..

Nguyễn Chơn Nhân
2 tháng 8 2020 lúc 9:33
https://i.imgur.com/tmaToim.png
Nguyễn Chơn Nhân
2 tháng 8 2020 lúc 9:34

chữ mình nó không được đẹp cho lắm, thông cảm

Phạm Mai Linh
Xem chi tiết
Lê Hoàng Thùy Linh
Xem chi tiết
Kiều Vũ Linh
20 tháng 10 2023 lúc 8:19

a) Xem lại đề

b) x³ - 4x²y + 4xy² - 9x

= x(x² - 4xy + 4y² - 9)

= x[(x² - 4xy + 4y² - 3²]

= x[(x - 2y)² - 3²]

= x(x - 2y - 3)(x - 2y + 3)

c) x³ - y³ + x - y

= (x³ - y³) + (x - y)

= (x - y)(x² + xy + y²) + (x - y)

= (x - y)(x² + xy + y² + 1)

d) 4x² - 4xy + 2x - y + y²

= (4x² - 4xy + y²) + (2x - y)

= (2x - y)² + (2x - y)

= (2x - y)(2x - y + 1)

e) 9x² - 3x + 2y - 4y²

= (9x² - 4y²) - (3x - 2y)

= (3x - 2y)(3x + 2y) - (3x - 2y)

= (3x - 2y)(3x + 2y - 1)

f) 3x² - 6xy + 3y² - 5x + 5y

= (3x² - 6xy + 3y²) - (5x - 5y)

= 3(x² - 2xy + y²) - 5(x - y)

= 3(x - y)² - 5(x - y)

= (x - y)[(3(x - y) - 5]

= (x - y)(3x - 3y - 5)

Nguyễn Trọng Chiến
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 2021 lúc 13:15

1.

\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)

\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)

\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)

\(\Leftrightarrow7x^2+20x+11=0\)

Nguyễn Việt Lâm
14 tháng 1 2021 lúc 13:15

2.

ĐKXĐ: ...

\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)

\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
14 tháng 1 2021 lúc 13:21

3.

ĐKXĐ: ...

Từ pt dưới:

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+3x-3y=3x^2+3y^2+1+1\)

\(\Leftrightarrow x^3-y^3+3x-3y=3x^2+3y^2+1+1\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+3y^2+3y+1\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+1\right)^3\)

\(\Leftrightarrow y=x-2\)

Thế vào pt trên:

\(x^2-2x+3=2\sqrt{5x-2}+\sqrt{7x-1}\)

\(\Leftrightarrow x^2-5x+2+2\left(x-\sqrt{5x-2}\right)+\left(x+1-\sqrt{7x-1}\right)=0\)

\(\Leftrightarrow x^2-5x+2+\dfrac{2\left(x^2-5x+2\right)}{x+\sqrt{5x-2}}+\dfrac{x^2-5x+2}{x+1+\sqrt{7x-1}}=0\)

\(\Leftrightarrow x^2-5x+2=0\)

Thảo Nguyên 8/3
Xem chi tiết
lê đức anh
4 tháng 11 2021 lúc 10:24

a) \(x-xy+y-y^2=x\left(1-y\right)+y\left(1-y\right)=\left(x+y\right)\left(1-y\right)\)

b) \(x^2-2x-y^2+1=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)

c) \(4x^2-4xy+y^2=\left(2x\right)^2-2.2x.y+y^2=\left(2x-y\right)^2\)

d) \(9x^3-9x^2y-4x+4y=9x^2\left(x-y\right)-4\left(x-y\right)=\left(9x^2-4\right)\left(x-y\right)=\left(3x-2\right)\left(3x+2\right)\left(x-y\right)\)

e) \(x^3+2+3\left(x^3-2\right)=x^3+2+3x^3-6=4x^3-4=4\left(x^3-1\right)=4\left(x-1\right)\left(x^2+x+1\right)\)

Khách vãng lai đã xóa
Ngân Hanna
Xem chi tiết
Nguyễn Thị Huyền Trang
12 tháng 7 2017 lúc 12:21

+) \(E=\left(4-x\right)\left(x+4\right)-\left(x+2\right)^2=16-x^2-x^2-4x-4\)

\(=-2x^2-4x+12\)

+)\(P=\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=4x^2+12x+9-4x^2+1\)

\(=12x+10\)

+)\(Q=\left(4-3x\right)^2-\left(9x-1\right)\left(9x+1\right)=16-24x+9x^2-81x^2+1\)

\(=-72x^2-24x+17\)

+) \(M=\left(5+x\right)\left(x-5\right)-\left(x-3\right)^2=x^2-25-x^2+6x-9\)

\(=6x-34\)

+) \(N=2\left(3x+1\right)\left(x-2\right)-6\left(x+2\right)^2=\left(6x+2\right)\left(x-2\right)-6\left(x^2+4x+4\right)\)

\(=6x^2-12x+2x-4-6x^2-24x-24=-34x-28\)

 Mashiro Shiina
12 tháng 7 2017 lúc 12:46

\(E=\left(4-x\right)\left(x+4\right)-\left(x+2\right)^2\)

\(E=4x+16-x^2-4x-x^2-4x-4\)

\(E=-2x^2-4x+12\)

\(P=\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)\)

\(P=4x^2+12x+9-4x^2-1\)

\(P=12x+10\)

\(Q=\left(4-3x\right)^2-\left(9x-1\right)\left(9x+1\right)\)

\(Q=16-24x+9x^2-81x^2+1\)

\(Q=17-24x-74x^2\)

\(M=\left(5+x\right)\left(x-5\right)-\left(x-3\right)^2\)

\(M=5x-25+x^2-5x-x^2+6x-9\)

\(M=-34+6x\)

\(N=2\left(3x+1\right)\left(x-2\right)-6\left(x+2\right)^2\)

\(N=\left(6x+2\right)\left(x-2\right)-\left(6x+12\right)^2\)

\(N=6x^2-12x+2x-4-36x^2-144x-144\)

\(N=-30x^2-154x-148\)

Nguyễn Đức Nhân
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 3 2020 lúc 10:55

a) Ta có: \(x^2-9x+20=0\)

\(\Leftrightarrow x^2-5x-4x+20=0\)

\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)

Vậy: x∈{4;5}

b) Ta có: \(x^3-4x^2+5x=0\)

\(\Leftrightarrow x\left(x^2-4x+5\right)=0\)(1)

Ta có: \(x^2-4x+5\)

\(=x^2-4x+4+1=\left(x-2\right)^2+1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+1\ge1>0\forall x\)

hay \(x^2-4x+5>0\forall x\)(2)

Từ (1) và (2) suy ra x=0

Vậy: x=0

c) Sửa đề: \(x^2-2x-15=0\)

Ta có: \(x^2-2x-15=0\)

\(\Leftrightarrow x^2+3x-5x-15=0\)

\(\Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

Vậy: x∈{-3;5}

d) Ta có: \(\left(x^2-1\right)^2=4x+1\)

\(\Leftrightarrow x^4-2x^2+1-4x-1=0\)

\(\Leftrightarrow x^4-2x^2-4x=0\)

\(\Leftrightarrow x\left(x^3-2x-4\right)=0\)

\(\Leftrightarrow x\left(x^3+2x^2+2x-2x^2-4x-4\right)=0\)

\(\Leftrightarrow x\cdot\left[x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\right]=0\)

\(\Leftrightarrow x\cdot\left(x^2+2x+2\right)\cdot\left(x-2\right)=0\)(3)

Ta có: \(x^2+2x+2\)

\(=x^2+2x+1+1=\left(x+1\right)^2+1\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)

hay \(x^2+2x+2>0\forall x\)(4)

Từ (3) và (4) suy ra

\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy: x∈{0;2}

Khách vãng lai đã xóa