Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 11 2017 lúc 17:53

Đỗ Khả Hào
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 5 2021 lúc 16:10

\(\Delta'=9-\left(2n-3\right)=12-2n>0\Rightarrow n< 6\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=2n-3\end{matrix}\right.\)

Do \(x_1\) là nghiệm của pt nên:

\(x_1^2-6x_1+2n-3=0\Leftrightarrow x_1^2-5x_1+2n-4=x_1-1\)

Tương tự ta có: \(x_2^2-5x_2+2n-4=x_2-1\)

Thế vào bài toán:

\(\left(x_1-1\right)\left(x_2-1\right)=-4\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1=-4\)

\(\Leftrightarrow2n-3-6+1=-4\Rightarrow n=2\)

Vangull
Xem chi tiết
Etermintrude💫
24 tháng 5 2021 lúc 21:34

undefinedundefined

edokawa conan
Xem chi tiết

\(x^2-6x+2m-3=0\)

\(\Delta=b^2-4ac=36-4\left(2m-3\right)=36-8m+12=48-8m\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)\(< =>48-8m>0< =>48>8m< =>6>m\)

Theo Vi-ét ta có :\(\hept{\begin{cases}x_1x_2=\frac{c}{a}=2m-3\\x_1+x_2=\frac{-b}{a}=6\end{cases}}\)là 

\(x_1\)là nghiệm phương trình \(x_1^2-6x_1+2m-3=0\)

\(=>x_1^2=3-2m+6x_1\)

\(x_2\)là nghiệm phương trình \(x_2^2-6x_2+2m-3=0\)

\(=>x_2^2=3-2m+6x_2\)

Mà \(\left(x_1^2-5x_1+2m-4\right)\left(x_2^2-5x_2+2m-4\right)=2\)

\(\left(3-2m+6x_1-5x_1+2m-4\right)\left(3-2m+6x_2-5x_2+2m-4\right)=2\)

\(\left(3+x_1-4\right)\left(3+x_2-4\right)=2\)

\(\left(x_1-1\right)\left(x_2-1\right)=2\)

\(x_1x_2-x_1-x_2+1=2\)

\(x_1x_2-\left(x_1+x_2\right)=1\)

\(2m-3-6=1\)

\(2m-9=1\)

\(m=5\)

Vậy m=5

Khách vãng lai đã xóa
Hồng Trần
Xem chi tiết
☆Châuuu~~~(๑╹ω╹๑ )☆
20 tháng 2 2022 lúc 8:24

Thay n = 4 vào pt (1) ta có

\(x^2-6x+5=0\\ ta.có.a+b+c=1-6+5=0\\ Vậy.pt.có.n_o:\\ x_1=1;x_2=\dfrac{c}{a}=5\) 

\(Ta.có:\Delta=b^2-4ac=....=-8n+48\\ Để.pt.\left(1\right).có.1.n_o.phân.biệt.thì.\Delta>0\\ \Leftrightarrow n< 6\) 

Vậy m < 6 thì pt (1) có nghiệm phân biệt \(x_1;x_2\) nên theo Vi ét ta có 

 \(x_1+x_2=\dfrac{-b}{a}=6\\ x_1x_2=\dfrac{c}{a}=2n-3\) 

Ta có  

\(x^2-6x+2n-3=0\\ \Leftrightarrow x^2-5x+2n-4=x-1\) 

Vì x1 x2 là nghiệm pt  \(x^2-6x+2n-3=0\) nên x1 x2 là nghiệm PT \(x^2-5x+2n-4=x-1\)  nên ta có 

\(x_1^2-5x+2x-4=x_1-1.và\\ x_2^2-5x_2+2n-4=x_2-1\\ \Rightarrow\left(x_1^2-5x_1+2n-4\right)\left(x_2^2-5x_2+2n-4\right)=\left(x_1-1\right)\left(x_2-1\right)\) 

\(Mà\\ \left(x_1^2-5x_1+2n-4\right)\left(x_2^2-5x_2+2n-4\right)=-4\\ Nên\left(x_1-1\right)\left(x_2-1\right)=-4\\ \Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1=-4\\ \Leftrightarrow2n-3-6+1=-4\\ \Leftrightarrow2n=4\Rightarrow n=2\left(tm\right)\\ ......\left(kl\right)\) 

 

KHANH QUYNH MAI PHAM
Xem chi tiết
Xích U Lan
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 5 2021 lúc 22:04

\(\Delta'=9-\left(2n-3\right)>0\Leftrightarrow n< 6\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=2n-3\end{matrix}\right.\)

Do \(x_1;x_2\) là nghiệm nên:

\(\left\{{}\begin{matrix}x_1^2-6x_1+2n-3=0\\x_2^2-6x_2+2n-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1^2-5x_1+2n-4=x_1-1\\x_2^2-5x_2+2n-4=x_2-1\end{matrix}\right.\)

Thay vào bài toán:

\(\left(x_1-1\right)\left(x_2-1\right)=-4\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+5=0\)

\(\Leftrightarrow2n-3-6+5=0\Leftrightarrow n=2\)

taekook
Xem chi tiết
Lê Thị Thục Hiền
4 tháng 7 2021 lúc 16:46

\(\Delta=m^2-4\left(m-4\right)=\left(m^2-4m+4\right)+12=\left(m-2\right)^2+12>0;\forall m\)

Suy ra pt luôn có hai nghiệm pb với mọi m

Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=m-4\end{matrix}\right.\)

\(\left(5x_1-1\right)\left(5x_2-1\right)< 0\)

\(\Leftrightarrow25x_1x_2-5\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow25\left(m-4\right)-5m+1< 0\)

\(\Leftrightarrow m< \dfrac{99}{20}\)

Vậy...

An Thy
4 tháng 7 2021 lúc 16:50

\(\Delta=m^2-4m+16=\left(m-2\right)^2+12>0\)

\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt

Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-4\end{matrix}\right.\)

Ta có: \(\left(5x_1-1\right)\left(5x_2-1\right)=25x_1x_2-5\left(x_1+x_2\right)+1\)

\(=25\left(m-4\right)-5m+1=20m-99\)

\(\Rightarrow20m-99< 0\Rightarrow m< \dfrac{99}{20}\)

Ngoc Tram
Xem chi tiết
level max
2 tháng 4 2023 lúc 18:52

loading...  

Đức Anh Lê
11 tháng 4 2023 lúc 8:05

xét ptr \(2x^2-x-3+0\)

△=\(\left(-1\right)^2-4.2.\left(-3\right)=25>0\)

⇒ptr có 2 ngh phân biệt \(x_1;x_2\)

Theo hệt thức viet \(x_1+x_2=\dfrac{1}{2};x_1x_2=\dfrac{-3}{2}\)

Xét A = \(x_1^2+x_2^2-x_1^2x_2^2=\left(x_1+x_2\right)^2-2x_1x_2-x_1^2x_2^2\)

          =\(\left(\dfrac{1}{2}\right)^2-2\left(-\dfrac{3}{2}\right)-\left(-\dfrac{3}{2}\right)^2=\dfrac{1}{4}+3-\dfrac{9}{4}=3-2=1\)

Của cậu đây ạ, kh hiểu j thì hỏi tớ nha <3