Cho 3 số dương x,y,z≤1.CMR x/yz+1+y/xz+1+/xy+1≤2
Cho 3 số dương x,y,z≤1 CMR x/yz+1+y/xz+1+z/xy+1≤2
cho 3 số thực dương x,y,z thỏa mãn xyz=1 cmr xy/(x^3+y^3+xy0+yz/(y^3+z^3+yz)+xz/(x^3+z^3+xz)<=1
Cho x,y,z dương. Cmr 1/(x-y)^2 +1/(y-z)^2+1/(z-x)^2>=4/(xy+xz+yz)
Cần thêm điều kiện x;y;z đôi một phân biệt và để dấu "=" xảy ra khi thì x;y;z không âm chứ không phải dương
Không mất tính tổng quát, giả sử \(z=min\left\{x;y;z\right\}\Rightarrow xy+yz+zx\ge xy\)
\(\Rightarrow\dfrac{4}{xy+yz+zx}\le\dfrac{4}{xy}\)
Đồng thời:
\(\left(z-x\right)^2=x^2+z\left(z-2x\right)\le x^2\Rightarrow\dfrac{1}{\left(z-x\right)^2}\ge\dfrac{1}{x^2}\)
\(\left(y-z\right)^2=y^2+z\left(z-2y\right)\le y^2\ge\dfrac{1}{\left(y-z\right)^2}\ge\dfrac{1}{y^2}\)
Nên ta chỉ cần chứng minh:
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
\(\Leftrightarrow\dfrac{xy}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{xy}\ge4\)
\(\Leftrightarrow\dfrac{xy}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2}{xy}\ge2\) (hiển nhiên đúng theo AM-GM)
cho x,y,z là số thực dương thỏa mãn xy+yz+xz=xyz
cmr \(\frac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\frac{yz}{x^3\left(1+y\right)\left(1+z\right)}+\frac{xz}{y^3\left(1+x\right)\left(1+z\right)}\ge\frac{1}{16}\)
Từ \(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\) thì có
\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(a+1\right)\left(c+1\right)}+\frac{a^3}{\left(b+1\right)\left(c+1\right)}\ge\frac{1}{16}\)\(\forall\hept{\begin{cases}a+b+c=1\\a,b,c>0\end{cases}}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{64}+\frac{c+1}{64}\ge\frac{3a}{16}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế
\(VT+\frac{2\left(a+b+c+3\right)}{64}\ge\frac{3\left(a+b+c\right)}{16}\Leftrightarrow VT\ge\frac{1}{16}\)
Khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=1\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
cho x,y,z là số thực dương thỏa mãn xy+yz+xz=xyz
cmr \(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}+\dfrac{xz}{y^3\left(1+x\right)\left(1+z\right)}\ge\dfrac{1}{16}\)
Gọi cái thiệt gớm đó là P
Ta có:
\(xy+yz+zx=xyz\)
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)
Ta có:
\(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{1+x}{64y}+\dfrac{1+y}{64x}\ge3\sqrt[3]{\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}.\dfrac{1+x}{64y}.\dfrac{1+y}{64x}}=\dfrac{3}{16z}\)
\(\Leftrightarrow\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}\ge\dfrac{3}{16z}-\dfrac{1}{64x}-\dfrac{1}{64y}-\dfrac{1}{32}\left(1\right)\)
Tương tự ta cũng có:
\(\left\{{}\begin{matrix}\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}\ge\dfrac{3}{16x}-\dfrac{1}{64y}-\dfrac{1}{64z}-\dfrac{1}{32}\left(2\right)\\\dfrac{zx}{y^3\left(1+z\right)\left(1+x\right)}\ge\dfrac{3}{16y}-\dfrac{1}{64z}-\dfrac{1}{64x}-\dfrac{1}{32}\left(3\right)\end{matrix}\right.\)
Từ (1), (2), (3) ta được
\(P\ge\dfrac{3}{16}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{1}{32}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{32}\)
\(=\dfrac{3}{16}-\dfrac{1}{32}-\dfrac{3}{32}=\dfrac{1}{16}\)
Dấu = xảy ra khi \(x=y=z=3\)
Đặt cái ban đầu là P
Ta có: \(xy+yz+zx=xyz\)
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)
Ta lại có:
\(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{1+x}{64x}+\dfrac{1+y}{64y}\ge\dfrac{3}{16z}\)
\(\Leftrightarrow\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}\ge\dfrac{3}{16z}-\dfrac{1}{32}-\dfrac{1}{64x}-\dfrac{1}{64y}\left(1\right)\)
Tương tự ta có:
\(\left\{{}\begin{matrix}\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}\ge\dfrac{3}{16x}-\dfrac{1}{32}-\dfrac{1}{64y}-\dfrac{1}{64z}\left(2\right)\\\dfrac{zx}{y^3\left(1+z\right)\left(1+x\right)}\ge\dfrac{3}{16y}-\dfrac{1}{32}-\dfrac{1}{64z}-\dfrac{1}{64x}\left(3\right)\end{matrix}\right.\)
Từ (1), (2), (3) ta có:
\(P\ge\dfrac{3}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{1}{32}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{32}\)
\(=\dfrac{3}{16}-\dfrac{1}{32}-\dfrac{3}{32}=\dfrac{1}{16}\)
Dấu = xảy ra khi \(x=y=z=3\)
cho 3 số dương x,y,z thỏa mãn xyz=1.
CMR: \(\dfrac{xy}{x^3+y^3+xy}\)+\(\dfrac{yz}{y^3+z^3+yz}\)+\(\dfrac{xz}{x^3+z^3+xz}\)<1
Lời giải:
Ta xét hiệu sau:
\(x^3+y^3-xy(x+y)=x^3-x^2y-(xy^2-y^3)\)
\(=x^2(x-y)-y^2(x-y)=(x^2-y^2)(x-y)=(x-y)^2(x+y)\geq 0, \forall x,y>0\)
\(\Rightarrow x^3+y^3\geq xy(x+y)(*)\)
\(\Rightarrow x^3+y^3+xy\geq xy(x+y+1)\)
\(\Rightarrow \frac{xy}{x^3+y^3+xy}\leq \frac{xy}{xy(x+y+1)}=\frac{1}{x+y+1}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế, suy ra:
\(\text{VT}\leq \underbrace{\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{x+z+1}}_{M}(1)\)
Vì $xyz=1$ nên tồn tại $a,b,c>0$ sao cho \((x,y,z)=(\frac{a^2}{bc}, \frac{b^2}{ac}, \frac{c^2}{ab})\)
Khi đó:
\(M=\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\)
\(\leq \frac{abc}{ab(a+b)+abc}+\frac{abc}{bc(b+c)+abc}+\frac{abc}{ca(c+a)+abc}\) (áp dụng công thức $(*)$)
hay \(M\leq \frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=\frac{a+b+c}{a+b+c}=1(2)\)
Từ \((1);(2)\Rightarrow \text{VT}\leq 1\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$
Bài của chị Akai đoạn đầu hơi phức tạp(em nghĩ thế).
Ta có:
\(\left(x-y\right)^2\ge0\) với \(\forall x,y\)
\(\Rightarrow x^2+y^2-xy\ge0\) với \(\forall x,y\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)với\(\forall x,y\)
\(\Rightarrow x^3+y^3\ge xy\left(x+y\right)\) với \(\forall x,y\)
Rồi giải tiếp như chị ấy.
cho x,y,z là sô dương x^2+y^2+z^2.CMR
1/1+xy + 1/1+yz + 1/1+xz >=3/2
a)với a,b,c là số bất kì .CMR :(x+y+z)2>=3(xy+xz+yz)
b)cho 3 số dương có x+y+z=1.CMR:\(\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}>\)14
Cho 3 số dương x,y,z. CM \(\dfrac{1}{x^2+yz}+\dfrac{1}{y^2+xz}+\dfrac{1}{z^2+xy}\le\dfrac{1}{2}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\)
Với a; b dương, nếu \(a\ge b\) thì \(\dfrac{1}{a}\le\dfrac{1}{b}\)
Áp dụng BĐT Cô-si cho mẫu số vế trái ta được:
\(\dfrac{1}{x^2+yz}+\dfrac{1}{y^2+xz}+\dfrac{1}{z^2+xy}\le\dfrac{1}{2x\sqrt{yz}}+\dfrac{1}{2y\sqrt{xz}}+\dfrac{1}{2z\sqrt{xy}}\)
\(\Rightarrow VT\le\dfrac{\sqrt{yz}}{2xyz}+\dfrac{\sqrt{xz}}{2xyz}+\dfrac{\sqrt{xy}}{2xyz}=\dfrac{\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}{2xyz}\)
Tiếp tục dùng Cô-si cho tử số:
\(VT\le\dfrac{\dfrac{y+z}{2}+\dfrac{x+z}{2}+\dfrac{x+y}{2}}{2xyz}=\dfrac{x+y+z}{2xyz}\)
\(\Rightarrow VT\le\dfrac{1}{2}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\) (đpcm)
Dấu "=" xảy ra khi x=y=z