Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
pansak9

Những câu hỏi liên quan
bill gates trần
Xem chi tiết
Phong trương
6 tháng 2 2019 lúc 21:17

ta có : x^5+2x^4+3x^3+3x^2+2x+1=0

\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0

\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0

\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0

\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0

\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0

x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)

\(\Rightarrow\)x+1=0

\(\Rightarrow\)x=-1

CÒN CÂU B TỰ LÀM (02042006)

Nguyễn Lê Phước Thịnh
14 tháng 2 2023 lúc 8:15

b: x^4+3x^3-2x^2+x-3=0

=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0

=>(x-1)(x^3+4x^2+2x+3)=0

=>x-1=0

=>x=1

Nghĩa
Xem chi tiết
Akai Haruma
17 tháng 3 2021 lúc 16:46

Lời giải:
Đặt $x^2+3x=a$ thì PT trở thành:

$a(a+4)=-4$

$\Leftrightarrow a^2+4a+4=0$

$\Leftrightarrow (a+2)^2=0$

$\Leftrightarrow a+2=0$

$\Leftrightarrow x^2+3x+2=0$

$\Leftrightarrow (x+1)(x+2)=0$

$\Rightarrow x=-1$ hoặc $x=-2$

Nguyen Quynh Huong
Xem chi tiết
Nguyen Quynh Huong
6 tháng 6 2018 lúc 20:08

@Akai Haruma , @phynit giải dùm em vs ạ

Nguyễn Đình Hữu
Xem chi tiết
Akai Haruma
30 tháng 11 2021 lúc 23:11

Lời giải:
ĐKXĐ:.........

PT \(\Leftrightarrow 3(x^2-x)+[(x+1)-\sqrt{3x+1}]+[(x+2)-\sqrt{5x+4}]=0\)

\(\Leftrightarrow 3(x^2-x)+\frac{x^2-x}{x+1+\sqrt{3x+1}}+\frac{x^2-x}{x+2+\sqrt{5x+4}}=0\)

\(\Leftrightarrow (x^2-x)\left[3+\frac{1}{x+1+\sqrt{3x+1}}+\frac{1}{x+2+\sqrt{5x+4}}\right]=0\)

Dễ thấy với $x\geq \frac{-1}{3}$ thì biểu thức trong ngoặc vuông luôn dương 

$\Rightarrow x^2-x=0$

$\Leftrightarrow x(x-1)=0$

$\Rightarrow x=0$ hoặc $x=1$ (đều tm)

Vũ Đình Thái
Xem chi tiết
Lê Thị Thục Hiền
19 tháng 5 2021 lúc 14:35

đk: \(-x^4+3x-1\ge0\)

Có \(-\left(x^4+1\right)\le-2x^2\)

 \(\Rightarrow\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}\le\sqrt{3x-2x^2}+\sqrt{2x^2-3x+2}\) 

Áp dụng bunhia có: \(\sqrt{3x-2x^2}+\sqrt{2x^2-3x+2}\le\sqrt{\left(1+1\right)\left(3x-2x^{^2}+2x^2-3x+2\right)}=2\)

\(\Rightarrow\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}\le2\)  (*)

Có: \(x^4-x^2-2x+4=\left(x^4+1\right)-x^2-2x+3\ge2x^2-x^2-2x+3=\left(x-1\right)^2+2\ge2\) (2*)

Từ (*) (2*) dấu = xảy ra khi x=1 (TM)

Vậy x=1

 

Gia Huy
21 tháng 7 2023 lúc 7:16

\(sin3x=-\dfrac{4}{3}\)

\(\Rightarrow\)\(-1\le sin3x\le1\) 

\(-\dfrac{4}{3}\le-1\)

\(\Rightarrow\)PT trên vô nghiệm

Lương Anh Quý
Xem chi tiết
HoangHuy
4 tháng 8 2018 lúc 20:03

Ta thấy x=0 không là nghiệm của phương trình

chia cả 2 vế cho x^2 ta được:

PT <=> x^2-3x-6+3/x+1/(x^2)=0

       <=> (x^2-2+1/(x^2))-3(x-1/x)-4=0

      <=> (x-1/x)^2-3(x-1/x)-4=0

Đặt x-1/x=y

PT <=> y^2-3y-4=0

     <=> y=-4 hoặc y=1

Tại y=-4 , ta có x+1/x+4=0

                       <=> x^2+4x+1=0

                       <=> x=-2+ √3 hoăc x=-2-  √ 3

Tại y=1 ta có x^2-x-1=0

                 <=> x=(1- √  5)/2 hoặc x=(1+  √5)/2

Lương Anh Quý
4 tháng 8 2018 lúc 21:52

mình k hiểu cái chỗ (x^2-2+1/(x^2) -2 ở đâu vậy 

HoangHuy
6 tháng 8 2018 lúc 10:17

đoạn đó là hàng đẳng thức nhé bạn, mình làm tắt, bạn phân thích từng bước ra là hiểu

Bảo Uyên Ngô
Xem chi tiết
hieu vu
2 tháng 6 2018 lúc 21:51

đặt x ra ngoài ,là giải đk nha p 

X(3x^2-3x-6)=4

Bảo Uyên Ngô
4 tháng 6 2018 lúc 21:20

sai r nha bạn 

santa
Xem chi tiết
Nguyễn Hoàng Minh
25 tháng 11 2021 lúc 16:17

\(PT\Leftrightarrow\left(x^2+4\right)\sqrt{2x+4}+\left(x^2+4\right)=4x^2+6x\\ \Leftrightarrow\dfrac{\left(x^2+4\right)\left(2x+3\right)}{\sqrt{2x+4}-1}-2x\left(2x+3\right)=0\\ \Leftrightarrow\left(2x+3\right)\left(\dfrac{x^2+4}{\sqrt{2x+4}-1}-2x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\\dfrac{x^2+4}{\sqrt{2x+4}-1}=2x\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x\sqrt{2x+4}-2x=x^2+4\\ \Leftrightarrow2x\sqrt{2x+4}=x^2+2x+4\\ \Leftrightarrow8x^3+16x^2=x^4+4x^3+12x^2+16x+16\\ \Leftrightarrow x^4-4x^3-4x^2+16x+16=0\\ \Leftrightarrow\left(x^2-2x-4\right)^2=0\\ \Leftrightarrow x^2-2x-4=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{matrix}\right.\)

Thử lại ta thấy \(x=-\dfrac{3}{2}\text{ không thỏa mãn; }x=1-\sqrt{5}\text{ không thỏa mãn}\)

Vậy PT có nghiệm \(x=1+\sqrt{5}\)