Tìm nghiệm của đa thức A(x)=x-2
Tìm nghiệm của đa thức f (x)= 2x-1 . Xác định a để nghiệm của đa thức
f(x) cũng là nghiệm của đa thức g(x)=4x^2-ax+1
f(x)=0
=>x=1/2
g(1/2)=0
=>1-1/2a+1=0
=>2-1/2a=0
=>a=4
Cho đa thức N(x)=x^2 -9 a) Tính giá trị của đa thức N(x)khi x=2 b) Tìm nghiệm của đa thức N(x)
a.
\(x=2\Rightarrow N\left(2\right)=2^2-9=4-9=-5\)
b.
\(N\left(x\right)=0\Leftrightarrow x^2-9=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
a)Tìm nghiệm của đa thức sau:F(x)=2x-1; G(x)=7x2+14 ;;;;b)Tìm đa thức bậc 2 của F(x) biết:F(0)=2;F(-1)=6 và một nghiệm của đa thức bằng 2
Cho đa thức P(x) = (x+1) (ax-6)
a) Tìm a để đa thức có nghiệm bằng 2
b) Tìm nghiệm còn lại của đa thức
Thay x=2, ta có
P(x)=(2+1)(2a+6)=0
=> 2a+6=0
=>2a=-6
a=-3
b) Xét x+1=0
=>x=-1
Vậy nghiệm còn lại là -1
a) P(2)=(2+1)(2a-6)=0
\(\Leftrightarrow6\left(a-3\right)=0\Leftrightarrow a=3\)3
Vậy a=3 thì đa thức có nghiệm bằng 2
b) \(\left(x+1\right)\left(3x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
Vậy nghiệm còn lại của đa thức là x=-1
Cho hai đa thức:
f(x)=3x+3
g(x)=ax2-2
a)Tìm nghiệm đa thức F(x)
b)Xác định a biết nghiệm của đa thưc f(x) cũng là môt nghiệm của đa thức g(x)
\(f_{\left(x\right)}=3x+3=0\)
\(\Rightarrow\)\(3x=-3\)
\(\Rightarrow\)\(x=-1\)
vậy...
cho hai đa thức sau:f(x)=(x-1)(x+2) và g(x)=x3+ax2+bx+2
tìm a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
a) \(A=-11x^5+4x-12x^2+11x^5+13x^2-7x+2\)
\(A=\left(-11x^5+11x^5\right)+\left(-12x^2+13x^2\right)+\left(4x-7x\right)+2\)
\(A=0+x^2+\left(-3x\right)+2\)
\(A=x^2-3x+2\)
Bậc của đa thức là: \(2\)
Hệ số cao nhất là: \(1\)
b) Ta có: \(M\left(x\right)=A\left(x\right)\cdot B\left(x\right)\)
\(\Rightarrow M\left(x\right)=\left(x^2-3x+2\right)\cdot\left(x-1\right)\)
\(\Rightarrow M\left(x\right)=x^3-x^2-3x^2+3x+2x-2\)
\(\Rightarrow M\left(x\right)=x^3-4x^2+5x-2\)
c) A(x) có nghiệm khi:
\(A\left(x\right)=0\)
\(\Rightarrow x^2-3x+2=0\)
\(\Rightarrow x^2-x-2x+2=0\)
\(\Rightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
1. Tính giá trị của đa thức F(x) = 2x2 – 3x – 2 tại x = -1; x = 0 ; x = 1; x = 2. Từ đó hãy tìm một nghiệm của đa thức F(x)
2. Tìm nghiệm của đa thức E(x) = x2 + x.
1. F(-1) = 2.(-1)2 – 3. (-1) – 2 = 2.1 + 3 – 2 = 3
F(0) = 2. 02 – 3 . 0 – 2 = -2
F(1) = 2.12 – 3.1 – 2 = 2 – 3 – 2 = -3
F(2) = 2.22 – 3.2 – 2 = 8 – 6 – 2 = 0
Vì F(2) = 0 nên 0 là 1 nghiệm của đa thức F(x)
2. Vì đa thức E(x) có hệ số tự do bằng 0 nên có một nghiệm là x = 0.
a. Tìm nghiệm của đa thức A(x)= 6-2x
b. Cho đa thức P(x)= x4+2x2+1
1. Tính P(1),P= \(\left(\dfrac{-1}{2}\right)\)
2. Chứng tỏ rằng đa thức P(x) không có nghiệm
a) A(x) = 0 ⇔ 6 - 2x = 0 ⇔ x = 3
Nghiệm của đa thức là x = 3
b)1. P(1) = \(1^4+2.1^2+1\) = 4
P(\(-\dfrac{1}{2}\)) = \(\left(-\dfrac{1}{2}\right)^4+2\left(-\dfrac{1}{2}\right)^2+1\) = \(\dfrac{25}{16}\)
Ta có: P(x) = \(\left(x^2+1\right)^2\)
Vì \(\left(x^2+1\right)^2\) ≥ 0
Nên P(x) = 0 khi \(x^2+1=0\) ⇔ \(x^2=-1\) (vô lý)
Vậy P(x) không có nghiệm
a) Đặt A(x)=0
\(\Leftrightarrow6-2x=0\)
\(\Leftrightarrow2x=6\)
hay x=3
Vậy: x=3 là nghiệm của đa thức A(x)
b)
1: Thay x=1 vào đa thức P(x), ta được:
\(P\left(1\right)=1^4+2\cdot1^2+1=1+2+1=4\)
Thay \(x=-\dfrac{1}{2}\) vào đa thức P(x), ta được:
\(P\left(-\dfrac{1}{2}\right)=\left(-\dfrac{1}{2}\right)^4+2\cdot\left(-\dfrac{1}{2}\right)^2+1=\dfrac{1}{16}+\dfrac{1}{2}+1=\dfrac{25}{16}\)
Cho đa thức f(x)=2x+b
a, Tìm b để f(x) nhận x=-2 là nghiệm
b, Tìm a để f(x) có nghiệm gấp đôi nghiệm của đa thức g(x)=2x+1
\(f\left(-2\right)=0\)
\(=>2.\left(-2\right)+b=0\)
\(=>-4+b=0 =>b=4\)