cho \(x< y\) so sánh
\(\dfrac{x}{3}+5và\dfrac{y}{3}+5\)
Bài 1: Tìm x; y ϵ \(ℤ\)
a) 2x - y\(\sqrt{6}\) = 5 + (x + 1)\(\sqrt{6}\)
b) 5x + y - (2x -1)\(\sqrt{7}\) = y\(\sqrt{7}\) + 2
Bài 2: So sánh M và N
M = \(\dfrac{\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{6}{4}+\dfrac{6}{5}+\dfrac{6}{7}-\dfrac{6}{11}}\)
N = \(\dfrac{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}{\dfrac{6}{2}+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}\)
Bài 3: Chứng minh:
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
Bài 3 :
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)
\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)
\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)
\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)
.....
\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)
\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
Bài 1:
a)So sánh \(\left(\dfrac{3}{4}\right)^{2021}+1với\dfrac{3}{4}+1\)
b)Cho x,y,z khác 0 thỏa mãn
\(\dfrac{2x-3}{5}=\dfrac{5y-2z}{3}=\dfrac{3z-5x}{2}\)
Tính GTBT: B=\(\dfrac{12x-5y-3z}{x-3y+2z}\)
help me ai nhanh nhất mik tích cho
a) Ta có: \(\left(\dfrac{3}{4}\right)^{2021}>\left(\dfrac{3}{4}\right)^1=\dfrac{3}{4}\)
\(\Leftrightarrow\left(\dfrac{3}{4}\right)^{2021}+1>\dfrac{3}{4}+1\)
bài 1 rút gọn
a) √98 - √72 + 0,5√8
b) √9a - √16a +√49
bài 2 so sánh
a) 2√7 và 3√2
b) 5 và 2 + √2
bài 3 khử mẫu
a)\(\sqrt{\dfrac{2}{3}}\)
b)\(\dfrac{x}{y}\). \(\sqrt{\dfrac{y}{x}}\)
3:
a: \(\sqrt{\dfrac{2}{3}}=\sqrt{\dfrac{6}{9}}=\dfrac{\sqrt{6}}{3}\)
b: \(\dfrac{x}{y}\cdot\sqrt{\dfrac{y}{x}}=\sqrt{\dfrac{x^2}{y^2}\cdot\dfrac{y}{x}}=\sqrt{\dfrac{x}{y}}=\dfrac{\sqrt{xy}}{y}\)
2:
a: 2căn 7=căn 28
3căn 2=căn 18
mà 28>18
nên 2*căn 7>3*căn 2
b: 5=2+3
mà 3>căn 2
nên 2+3>2+căn 2
=>5>2+căn 2
1) a) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\)
\(=\sqrt{49.2}-\sqrt{36.2}+0,5\sqrt{4.2}\)
\(=7\sqrt{2}-6\sqrt{2}+0,5.2\sqrt{2}\)
\(=7\sqrt{2}-6\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
b) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49}\)
\(=3\sqrt{a}-4\sqrt{a}+7=7-\sqrt{a}\)
2. a) \(2\sqrt{7}=\sqrt{4.7}=\sqrt{28}\)
\(3\sqrt{2}=\sqrt{9.2}=\sqrt{18}\)
Mà \(\sqrt{28}>\sqrt{18}\Rightarrow2\sqrt{7}>3\sqrt{2}\)
b) \(5=2+3=2+\sqrt{9}\)
Vì \(\sqrt{9}>\sqrt{2}\Rightarrow2+\sqrt{9}>2+\sqrt{2}\Rightarrow5>2+\sqrt{2}\)
3. a) \(\sqrt{\dfrac{2}{3}}=\sqrt{\dfrac{6}{9}}=\dfrac{\sqrt{6}}{3}\)
b) \(\dfrac{x}{y}.\sqrt{\dfrac{y}{x}}=\sqrt{\dfrac{x^2}{y^2}.\dfrac{y}{x}}=\sqrt{\dfrac{x}{y}}=\dfrac{\sqrt{xy}}{y}\)
Biết \(\dfrac{x+y}{7}=\dfrac{x-y}{3}\) và \(xy=250\). Hãy so sánh \(\left|x\right|\) và \(\left|y\right|\)
cho A = (\(\dfrac{1}{2^2}-1\)).(\(\dfrac{1}{3^2}-1\)).(\(\dfrac{1}{4^2}-1\)).....(\(\dfrac{1}{100^2}-1\))
so sánh A với -\(\dfrac{1}{2}\)
b)Tìm số nguyên tố x,y sao cho \(x^2\)+117=\(^{y^2}\)
a) Trước hết ta chứng minh \(a^2-1=\left(a-1\right)\left(a+1\right)\text{tự chứng minh }\)
Áp dụng bổ đề trên ta có:
\(-A=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\cdot...\cdot\left(1-\dfrac{1}{100^2}\right) =\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}\cdot...\cdot\dfrac{100^2-1}{100^2}=\dfrac{1\cdot3}{2^2}\cdot\dfrac{2\cdot4}{3^2}\cdot...\cdot\dfrac{99\cdot101}{100^2}=\dfrac{1\cdot2\cdot3^2\cdot...\cdot99^2\cdot100\cdot101}{2^2\cdot3^2\cdot...\cdot100^2}=\dfrac{1\cdot101}{2\cdot100}>\dfrac{1}{2}\\ \Rightarrow A< -\dfrac{1}{2}\)
b)
TH1: x chẵn mà x là số nguyên tố => x=2
=> y^2 = 117+4=121 => y=11 (thỏa mãn)
TH2: x lẻ => x^2 lẻ . Mà 117 lẻ
=> x^2+117 chẵn => y^2 chẵn => y chẵn mà y là số nguyên tố
=> y=2
=>x^2+117= 4=> x^2 = -113 (vô lý)
Vậy x=2;y=11
Làm hộ mình câu c nha
Cho \(H=\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x^3}-\sqrt{y^3}}{x-y}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\).
a) Rút gọn H
b) Chứng minh \(H\ge0\)
c) So sánh H với \(\sqrt{H}\)
a) Rút gọn được \(\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
c) \(H=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\Rightarrow H^2=\dfrac{xy}{\left(x-\sqrt{xy}+y\right)^2}\)
\(\Rightarrow H^2-H=\dfrac{xy}{\left(x-\sqrt{xy}+y\right)^2}-\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}=\dfrac{xy-\sqrt{xy}\left(x-\sqrt{xy}+y\right)}{\left(x-\sqrt{xy}+y\right)^2}\)
\(=\dfrac{2xy-x\sqrt{xy}-y\sqrt{xy}}{\left(x-\sqrt{xy}+y\right)^2}=\dfrac{-\sqrt{xy}\left(x-2\sqrt{xy}+y\right)}{\left(x-\sqrt{xy}+y\right)^2}=-\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(x-\sqrt{xy}+y\right)^2}\)
Do \(\left\{{}\begin{matrix}\sqrt{xy}\ge0\\\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\\\left(x-\sqrt{xy}+y\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow H^2-H=-\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(x-\sqrt{xy}+y\right)^2}\le0\Rightarrow H^2\le H\)
Mà \(H\ge0\left(cmt\right)\Rightarrow H\le\sqrt{H}\)
Cho các số Q x,y,z :
x = \(\dfrac{a}{b};y=\dfrac{c}{d};z=\dfrac{m}{n}trong\) đó m= \(\dfrac{a+c}{2}\)
n = \(\dfrac{b+d}{2}\). Cho biết x\(\ne\)y, hãy so sánh y với z , z với x
Cho A = \(\dfrac{1}{2}x\dfrac{3}{4}x\dfrac{5}{6}x...x\dfrac{99}{100};B=\dfrac{1}{10}\) So sánh: A và B.
Tham khảo:
https://lazi.vn/edu/exercise/so-sanh-a-1-2-3-4-5-6-99-100-va-b-1-10
Cho các số hữu tỉ x=\(\dfrac{a}{b}\) ; y=\(\dfrac{c}{d}\) và z = \(\dfrac{m}{n}\) . Biết ad -bc =1 , cn-bm=1
a) Hãy so sánh các số x,y,z
b) So sánh y với t biết t = \(\dfrac{a+m}{b+m}\) với b + n \(\ne\)0
(Sửa \(cn-bm\rightarrow cn-dm\))
Ta có :
\(\left\{{}\begin{matrix}ad-bc=1\\cn-dm=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}ad=1+bc\\cn=1+dm\end{matrix}\right.\)
\(\dfrac{x}{y}=\dfrac{a}{b}.\dfrac{d}{c}=\dfrac{ad}{bc}=\dfrac{1+bc}{bc}=1+\dfrac{1}{bc}>1\left(bc>0\right)\)
\(\Rightarrow x=\dfrac{a}{b}>y=\dfrac{c}{d}\left(2\right)\)
\(\dfrac{y}{z}=\dfrac{c}{d}.\dfrac{n}{m}=\dfrac{cn}{dm}=\dfrac{1+dm}{dm}=1+\dfrac{1}{dm}>1\left(dc>0\right)\)
\(\Rightarrow y=\dfrac{c}{d}>z=\dfrac{m}{n}\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow x>y>z\)