tim GTLN, GTNN của\(\frac{2x+1}{x^2+2}\)
Tim GTNN cua bieu thuc : B=x^2+xy+y^2-2x-3y+2019
Tìm GTNN , GTLn của biểu thức : A=\(\frac{8x+3}{4x^2+1}\)
\(4B=4x^2+4xy+4y^2-8x-12y+8076\)
= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)
\(+\left(2x\right)^2-8x+8076\)
= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)
đến đây thì dễ rồi
tim GTLN hoac GTNN cua
a.\(\frac{x^2-1}{x^2+1}\)
b\(\frac{2x+1}{x^2}\)
bạn cứ xét mẫu là được
mẫu của chúng luôn luôn > hoặc = 0
chỉ cần xét tử thôi nha bạn
a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)
b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)
1) Tìm GTNN của P=\(^{2x^2}\)+5x+8
2) Tìm GTLN của Q=\(^{-3x^2}\)+7x+15
3) Tìm GTLN của P=\(\frac{5}{x^2+2x+3}\)
4) Tìm GTNN của P=\(\frac{6}{-x^2+2x+5}\)
5) Tìm GTNN của P=\(\frac{x^2-2x+3}{x}\)
6) Tìm GTNN của P=\(\frac{x^2-2x+3}{x^2}\)
7) Tìm GTLN của Q=\(\frac{x^2+2x-3}{x^2}\)
mn làm được câu nào thì giúp mk với nha
tìm GTNN và GTLN của P=\(\frac{x^2+x+1}{x^2+2x+1}\)
Kết luận: GTNN của P là 3/4; P không có GTLN.
Giải: P là một giá trị của hàm số đã cho khi và chỉ khi tồn tại x để \(P=\frac{x^2+x+1}{x^2+2x+1}\) (1), tức là phương trình (1) ẩn x phải có nghiệm.
Ta có \(\left(1\right)\Leftrightarrow P\left(x^2+2x+1\right)=x^2+x+1\)\(\Leftrightarrow\left(P-1\right)x^2+\left(2P-1\right)x+\left(P-1\right)=0\).
Nếu \(P=1\) thì (1) trở thành \(x=0\), phương trình có nghiệm x = 0.
Nếu \(P\ne1\) thì phương trình sẽ có nghiệm khi và chỉ khi
\(\Delta=\left(2P-1\right)^2-4\left(P-1\right)^2=4P-3\ge0\Leftrightarrow P\ge\frac{3}{4}\)
Vậy tập giá trị của P là \(\frac{3}{4}\le P< +\infty\). Do đó P không có GTLN và P có GTNN = \(\frac{3}{4}\)
\(P=\frac{x^2+x+1}{x^2+2x+1}=\frac{\frac{3}{4}\left(x^2+2x+1\right)+\frac{\left(x^2-2x+1\right)}{4}}{x^2+2x+1}\)
\(=\frac{3}{4}+\frac{\left(x-1\right)^2}{4\left(x+1\right)^2}\ge\frac{3}{4}\)
Dấu = xảy ra khi \(x=1\)
Tìm GTNN, GTLN của \(\frac{3x^2+2x+1}{x^2-2x+3}\)
Đặt \(y=\frac{3x^2+2x+1}{x^2-2x+3}\Rightarrow y.x^2-2yx+3y=3x^2+2x+1\)
\(\Leftrightarrow\left(y-3\right)x^2-2\left(y+1\right)x+3y-1=0\)
\(\Delta'=\left(y+1\right)^2-\left(y-3\right)\left(3y+1\right)\ge0\)
\(\Leftrightarrow-y^2+5y+2\ge0\)
\(\Rightarrow\frac{5-\sqrt{33}}{2}\le y\le\frac{5+\sqrt{33}}{2}\)
a,Tim GTNN cua bieu thuc \(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\)
b,Tim GTLN cua bieu thuc \(D=\frac{4}{\left(2x-3\right)^2+5}\)
\(\text{a)Để C đạt GTNN}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)
\(\Rightarrow C\ge-10\)
\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)
b)\(\text{Để D đạt GTLN}\)
=>(2x-3)2+5 đạt GTNN
Mà (2x-3)2\(\ge\)5
\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)
1. Tim GTNN: \(B=\frac{3x^2-2x+3}{x^2+1}\)
2. Tim GTLN:
\(C=\frac{100}{25x^2-20x+14}\)
\(D=\frac{1000}{x^2+y^2-20.\left(x+y\right)+2210}\)
1. Tìm GTNN, GTLN \(A=\frac{1}{\sqrt{3-x^2}}\)
2. GTNN \(Z=\frac{2-x}{1-2x}+\frac{1+2x}{3x}\)
1,2 kiểu gì ẹ
3,
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge2\)
=> \(\frac{1}{x+1}\ge\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)
Làm tương tự rồi nhân lại ta được \(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
=> \(xyz\le\frac{1}{8}\).Dấu bằng khi x=y=z=1/2
4.
Ta đi CM: \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2}\) <=> \(a^4+a\left(b+c\right)^3\le\left(a^2+b^2+c^2\right)^2\)
<=> \(a\left(b+c\right)^3\le2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\)
Áp dụng BDT COSI thì
\(2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a^2\left(b+c\right)^2+\frac{\left(b+c\right)^2}{4}\ge a\left(b+c\right)^3\)
Do đó có dpcm
Làm tương tự rồi cộng lại ta đc bdt ban đầu
Dấu bằng xảy ra khi a=b=c
cho x 0,y 0, x y 2012. a, tim GTLN cua A 2x 2 8xy 2y 2 x 2 2xy y 2 b, tim GTNN cua B 1 2012 x 2 1 2012 y 2