Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tinas
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 3 2021 lúc 21:28

Gọi \(d\inƯC\left(12n+1;30n+2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow60n+5-60n-4⋮d\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(12n+1;30n+2\right)=1\)

hay phân số \(A=\dfrac{12n+1}{30n+2}\) là phân số tối giản(đpcm)

I don
19 tháng 3 2021 lúc 21:42

Gọi d∈ƯC(12n+1;30n+2)d∈ƯC(12n+1;30n+2)

⇔⎧⎨⎩12n+1⋮d30n+2⋮d⇔⎧⎨⎩60n+5⋮d60n+4⋮d⇔{12n+1⋮d30n+2⋮d⇔{60n+5⋮d60n+4⋮d

⇔60n+5−60n−4⋮d⇔60n+5−60n−4⋮d

⇔1⋮d⇔1⋮d

⇔d∈Ư(1)⇔d∈Ư(1)

⇔d∈{1;−1}⇔d∈{1;−1}

⇔ƯCLN(12n+1;30n+2)=1⇔ƯCLN(12n+1;30n+2)=1

vậy 

Hoàng Ngọc Quang
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 7 2023 lúc 9:15

c: nếu n=3 thì đây ko phải phân số tối giản nha bạn

b: Nếu n=3 thì đây cũng ko phải phân số tối giản nha bạn

a: Nếu n=1 thì đây cũng ko phải phân số tối giản nha bạn

Vũ Phương Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 21:54

a: Gọi d=ƯCLN(2n+7;2n+3)

=>2n+7 chia hết cho d và 2n+3 chia hết cho d

=>2n+7-2n-3 chia hết cho d

=>4 chia hết cho d

mà 2n+7 lẻ

nên d=1

=>PSTG

b: Gọi d=ƯCLN(6n+5;8n+7)

=>4(6n+5)-3(8n+7) chia hết cho d

=>-1 chia hết cho d

=>d=1

=>PSTG

 

Nguyễn Bảo Lâm
28 tháng 2 lúc 19:38

1.    a. Tính :

1.    a. Tính :

Sad:(
Xem chi tiết
Nguyễn Ngọc Gia Huy
12 tháng 4 2023 lúc 19:28

Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )

n +1 = 2n + 2 (1) ; 2n+3*)   (2)

Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1

vậy ta có đpcm 

gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )

3n +2 = 15 n + 10 (1)  ; 5n + 3 =15n + 9 (2)

lấy (!) - (2)  ta được  15n + 10 - 15n - 9 = 1:d => d = 1

Vậy ta có đpcm 

Vũ Nhật Minh
Xem chi tiết
Văn Thanh Lương
12 tháng 5 2021 lúc 20:05

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

Khách vãng lai đã xóa
Vũ Ngọc Diệp
Xem chi tiết
HT.Phong (9A5)
18 tháng 2 2023 lúc 12:23

Đặt \(d\) là \(\text{Ư}CLN\) \(\left(12n+1;30n+2\right)\)

Theo bài ra: \(12n+1⋮d\Rightarrow5.\left(12n+1\right)⋮d\left(1\right)\)

                    \(30n+2⋮d\Rightarrow2\left(30n+2\right)⋮d\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\) \(5.\left(12n+1\right)-2.\left(30n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Mà phân số tối giản thì có \(\text{Ư}CLN\) của tử số và mẫu số là 1

Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản

nguyễn ngọc linh
Xem chi tiết
Akai Haruma
5 tháng 2 lúc 23:28

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

Akai Haruma
5 tháng 2 lúc 23:32

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.

An Bùi
Xem chi tiết
Nguyễn Huy Tú
28 tháng 1 2022 lúc 9:34

Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*) 

\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)

Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)

\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)

Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Rhider
28 tháng 1 2022 lúc 9:36

a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n+3 là số lẻ nên

\(\Rightarrow d=1\left(đpcm\right)\)

c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

lê thị vân chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 4 2021 lúc 21:14

a) Để A là số nguyên thì \(n+2⋮n+1\)

\(\Leftrightarrow n+1+1⋮n+1\)

mà \(n+1⋮n+1\)

nên \(1⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(1\right)\)

\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)

hay \(n\in\left\{0;-2\right\}\)(thỏa ĐK)

Vậy: \(n\in\left\{0;-2\right\}\)

b) Gọi d\(\in\)ƯC(n+2;n+1)

\(\Leftrightarrow\left\{{}\begin{matrix}n+2⋮d\\n+1⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(n+2;n+1\right)=1\)

hay A là phân số tối giản(Đpcm)