1Đặt UCLN(\(2n^2\) + n + 1;n) = d
=> \(2n^2\) + n + 1 ⋮ d ; n ⋮ d
=> (2n + 1) n ⋮ d
<=>\(2n^2\) + n ⋮ d
<=>(2n2 + n + 1) - (2n2 + n) ⋮ d
<=> 1⋮d
=> d ϵƯ(1)=1
=>UCLN(\(2n^2\) + n + 1;n) =1
=>dpcm
1Đặt UCLN(\(2n^2\) + n + 1;n) = d
=> \(2n^2\) + n + 1 ⋮ d ; n ⋮ d
=> (2n + 1) n ⋮ d
<=>\(2n^2\) + n ⋮ d
<=>(2n2 + n + 1) - (2n2 + n) ⋮ d
<=> 1⋮d
=> d ϵƯ(1)=1
=>UCLN(\(2n^2\) + n + 1;n) =1
=>dpcm
Chứng minh những phân số sau là tối giản
\(G=\dfrac{2n+3}{4n+1}\) \(H=\dfrac{3n+2}{7n+1}\)
\(I=\dfrac{n+7}{n+2}\)
Chứng minh rằng các phân số sau tối giản
a) \(\dfrac{2n+7}{2n+3}\) (n ∈ N)
b)\(\dfrac{6n+5}{8n+7}\)(n ∈ N)
c)\(\dfrac{2^{2024}+3}{2^{2023}+1}\) tối giản
18. Chứng minh rằng các phân số sau là phân số tối giản với mọi số tự nhiên n:
\(\dfrac{ n+1}{2n+3 }\) ý a
\(\dfrac{ 2n+3}{4n+8 }\)ý b
\(\dfrac{ 3n+2}{ 5n+3}\) ý c
Bài 1: Cho phân số n - 1 / n - 2 ( n thuộc Z ; n khác 2 ). Tìm n để A là phân số tối giản
Bài 2: Với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản: A = 2n + 1 / 2n + 3
Chứng minh phân số sau tối giản với mọi số tự nhiên n: \(\dfrac{12n+1}{30n+2}\)
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
A =\(\dfrac{n+2}{n+1}\) với n \(\ne\) 3
a, tìm n để A là số nguyên
b, chứng minh A là phân số tối giản
Chứng minh các phân số sau tối giản:
\(\dfrac{n+7}{n+8},\dfrac{4n+7
}{n+2},\dfrac{5n+12}{3n+7}\)
Chứng minh rằng phân số \(\dfrac{2n^2+n+1}{n}\) là phân số tối giản.
Giải chi tiết giùm mình với ạ, mình cảm ơn nhiều!!!!