Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Thanh Tịnh
Xem chi tiết
alibaba nguyễn
23 tháng 8 2016 lúc 13:39

Đặt a = x + y, b = y + z, c = x + z

Từ đó ta có x = \(\frac{a\:+C-b}{2}\), y = \(\frac{a+b-c}{2}\), z = \(\frac{b+c-a}{2}\)

Thì bất đẳng thức thành

\(\frac{a+c-b}{2b}\)\(\frac{b+c-a}{2a}\)\(\frac{a+b-c}{2c}\)<= \(\frac{3}{2}\)

<=> (a/b + b/a) + (a/c + c/a) + (b/c + c/b) <= 6 (đúng)

Vậy bất đẳng thức ban đầu là đúng

alibaba nguyễn
23 tháng 8 2016 lúc 13:40

Mình ghi nhầm đấu nhé >= mà ghi nhầm thành <=

Thảo Nguyên Xanh
Xem chi tiết
alibaba nguyễn
1 tháng 8 2017 lúc 8:40

Ta có:

\(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{x}+\frac{1}{z}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\)

\(\Leftrightarrow\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{x}+\frac{z}{x}+\frac{z}{y}=-2\)

\(\Leftrightarrow x^2z+x^2y+y^2x+y^2z+z^2x+z^2y+2xyz=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=-y\\y=-z\\z=-x\end{cases}}\)

Với \(x=-y\)

\(\Rightarrow x^3+y^3+z^3=1\)

\(\Rightarrow z=1\)

\(\Rightarrow P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x}+\frac{1}{-x}+\frac{1}{1}=1\)

Tương tự cho các trường hợp còn lại.

Ho Nhat Minh
Xem chi tiết
Phạm phương thảo
10 tháng 1 2020 lúc 15:54

Cho mình hỏi đề có thiếu gì khôg vậy

Khách vãng lai đã xóa
Nguyễn Thảo Nguyên
Xem chi tiết
Thắng Nguyễn
6 tháng 10 2016 lúc 6:22

\(P=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)

Áp dụng Bđt Cauchy-schwarz dạng engel ta có:

\(P\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}=\frac{49}{16}\)

Dấu = khi \(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\Leftrightarrow\hept{\begin{cases}x=\frac{4}{7}\\y=\frac{2}{7}\\z=\frac{1}{7}\end{cases}}\)

Vậy...

shitbo
6 tháng 5 2020 lúc 17:57

Cách khác không dùng Cauchy Schwarz

Ta cần chứng minh \(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge\frac{49}{16}\)

\(\Leftrightarrow P'=\frac{1}{x}+\frac{4}{y}+\frac{16}{z}\ge49\)

Áp dụng BĐT AM - GM ta có:

\(\frac{1}{x}+49x\ge2\sqrt{\frac{1}{x}\cdot49}=14\)

\(\frac{4}{y}+49y\ge2\sqrt{\frac{4}{y}\cdot49y}=28\)

\(\frac{16}{z}+49z\ge2\sqrt{\frac{16}{z}\cdot49z}=56\)

\(\Rightarrow P'+49\left(x+y+z\right)\ge98\)

\(\Rightarrow P'\ge49\)

Khách vãng lai đã xóa
Kun ZERO
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 6 2020 lúc 21:28

Đặt \(\left\{{}\begin{matrix}x-y=a\\x-z=b\end{matrix}\right.\) \(\Rightarrow ab=1\)

\(S=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a-b\right)^2}=\frac{a^2+b^2}{a^2b^2}+\frac{1}{\left(a-b\right)^2}=a^2+b^2+\frac{1}{\left(a-b\right)^2}\)

\(S=a^2+b^2-2ab+\frac{1}{\left(a-b\right)^2}+2=\left(a-b\right)^2+\frac{1}{\left(a-b\right)^2}+2\)

\(S\ge2\sqrt{\frac{\left(a-b\right)^2}{\left(a-b\right)^2}}+2=4\) (đpcm)

Trần Nguyễn Khánh Linh
Xem chi tiết
Lầy Văn Lội
4 tháng 8 2017 lúc 20:54

\(\left(x+y\right)\left(y+z\right)=xy+xz+y^2+yz=y\left(x+y+z\right)+xz\)

\(=y.\frac{1}{xyz}+xz=\frac{1}{xz}+xz\ge2\)

Aquarius Love
Xem chi tiết
tth_new
22 tháng 9 2019 lúc 7:41

Quy đồng full:v

x = y = z = 1\(\rightarrow P=1\). Ta sẽ c/m đó là gtln của P. Thật vậy:

\(P-1=2\Sigma\frac{\left(x-1\right)}{x+2}=2\Sigma\left(\frac{x-1}{x+2}-\frac{1}{3}\left(x-1\right)+\frac{1}{3}\left(x-1\right)\right)\)

\(=\Sigma\frac{-2\left(x-1\right)^2}{3\left(x+2\right)}+\frac{1}{3}\left(x+y+z-3\right)\le0\)

Do đó P \(\le1\). Vậy....

P/s: đúng không ta:3

tth_new
22 tháng 9 2019 lúc 7:42

ấy nhầm khúc cuối:v

\(=\Sigma\frac{-2\left(x-1\right)^2}{3\left(x+2\right)}+\frac{2}{3}\left(x+y+z-3\right)^2\le0\)

Từ đó suy ra ...

P/s: Mong là lần này không nhầm:)

Phùng Minh Quân
22 tháng 9 2019 lúc 8:55

\(\frac{2}{3}\left(x+y+z-3\right)^2\ge0\) mà em :) 

Cần đánh giá: \(\frac{x}{x+2}\le\frac{2}{9}x+\frac{1}{9}\) (*) 

Thật vậy, bđt (*) \(\Leftrightarrow\)\(\frac{8x-2}{9\left(x+2\right)}\le\frac{2}{9}x\)\(\Leftrightarrow\)\(8x-2\le2x^2+4x\)\(\Leftrightarrow\)\(\left(x-1\right)^2\ge0\) ( luôn đúng ) 

Tương tự với 2 ẩn y, z => \(P\le\frac{2}{9}\left(x+y+z\right)+\frac{1}{3}=1\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Minh Triều
Xem chi tiết
Mr Lazy
10 tháng 7 2015 lúc 20:11

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\left(x+y+z\right)\left(xy+yz+zx\right)=xyz\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow x=-y\text{ hoặc }y=-z\text{ hoặc }z=-x\)

\(+\text{Nếu }x=-y\text{ thì }x^8=\left(-y\right)^8=y^8\Rightarrow x^8-y^8=0\Rightarrow M=\frac{3}{4}\)

\(+\text{Nếu }y=-z\text{ thì }y^9=\left(-z\right)^9=-z^9\Rightarrow y^9+z^9=0\Rightarrow M=\frac{3}{4}\)

\(+\text{Nếu }z=-x\text{ thì }z^{10}=\left(-x\right)^{10}=x^{10}\Rightarrow z^{10}-x^{10}=0\Rightarrow M=\frac{3}{4}\)

\(\text{Vậy M}=\frac{3}{4}.\)

 

Thu Hà
10 tháng 7 2015 lúc 21:50

ui trui, trieu dang gioi zay ma con hoi , la thiek

Nguyễn Tất Đạt
Xem chi tiết
Nguyễn Hưng Phát
28 tháng 8 2018 lúc 7:16

\(A=\frac{xy+2y+1}{xy+x+y+1}+\frac{yz+2z+1}{yz+y+z+1}+\frac{zx+2x+1}{zx+z+x+1}\)

\(=\frac{y\left(x+1\right)+y+1}{\left(x+1\right)\left(y+1\right)}+\frac{z\left(y+1\right)+z+1}{\left(y+1\right)\left(z+1\right)}+\frac{x\left(z+1\right)+x+1}{\left(z+1\right)\left(x+1\right)}\)

\(=\frac{y}{y+1}+\frac{1}{x+1}+\frac{z}{z+1}+\frac{1}{y+1}+\frac{x}{x+1}+\frac{1}{z+1}\)

\(=\frac{y+1}{y+1}+\frac{z+1}{z+1}+\frac{x+1}{x+1}=3\)