Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mạnh Hùng Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2023 lúc 13:58

a: Khi x=-2 thì (y+2)^2=25-(-2-1)^2=25-9=16

=>y=2 hoặc y=-6

TH1: A(-2;2)

I(1;-2)

vecto IA=(-3;4)

Phương trình Δ là:

-3(x-1)+4(y+2)=0

=>-3x+3+4y+8=0

=>-3x+4y+11=0

TH2: A(-2;-6); I(1;-2)

vecto IA=(-3;-4)=(3;4)

Phương trình IA là:

3(x+2)+4(y+6)=0

=>3x+6+4y+24=0

=>3x+4y+30=0

b: Δ//12x+5y+6=0

=>Δ: 12x+5y+c=0

d(I;Δ)=5

=>\(\dfrac{\left|12\cdot1+5\cdot\left(-2\right)+c\right|}{\sqrt{12^2+5^2}}=5\)

=>|c+2|=5*13=65

=>c=63 hoặc c=-67

Hoài Trung
Xem chi tiết
Hồng Phúc
18 tháng 4 2021 lúc 18:04

a, Đường tròn cần tìm có tâm \(I=\left(-\dfrac{1}{2};\dfrac{3}{2}\right)\), bán kính \(R=\dfrac{\sqrt{2}}{2}\)

Phương trình đường tròn: \(\left(x+\dfrac{1}{2}\right)^2+\left(y-\dfrac{3}{2}\right)^2=\dfrac{1}{2}\)

b, (C) có tâm \(I=\left(1;2\right)\), bán kính \(R=\sqrt{2}\)

Giao điểm của (C) và trục tung có tọa độ là nghiệm hệ:

\(\left\{{}\begin{matrix}x^2+y^2-2x-4y+3=0\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y^2-4y+3=0\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}y=1\\x=0\end{matrix}\right.\)

\(\Rightarrow\) Giao điểm: \(M=\left(0;3\right);N=\left(0;1\right)\)

Phương trình tiếp tuyến tại M có dạng: \(\Delta_1:ax+by-3b=0\left(a^2+b^2\ne0\right)\)

Ta có: \(d\left(I;\Delta_1\right)=\dfrac{\left|a+2b-3b\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\)

\(\Leftrightarrow a^2+b^2-2ab=2a^2+2b^2\)

\(\Leftrightarrow\left(a+b\right)^2=0\)

\(\Leftrightarrow a=-b\)

\(\Rightarrow\Delta_1:x-y+3=0\)

Tương tự ta tìm được tiếp tuyến tại N: \(\Delta_2=x+y-1=0\)

tran gia vien
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 3 2021 lúc 22:02

Đường tròn (C) tâm \(I\left(2;4\right)\) bán kính \(R=5\)

Điểm A thuộc (C) nên tiếp tuyến d qua A vuông góc IA

\(\Rightarrow\overrightarrow{AI}=\left(3;4\right)\Rightarrow\) đường thẳng d nhận (3;4) là 1 vtpt

Phương trình d:

\(3\left(x+1\right)+4\left(y-0\right)=0\Leftrightarrow3x+4y+3=0\)

Sách Giáo Khoa
Xem chi tiết
Xuân Tuấn Trịnh
26 tháng 4 2017 lúc 18:22

M N d d d1 d2 I

a) Tọa độ giao điểm của (C) và d là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}x^2+y^2-x-7y=0\left(1\right)\\3x+4y-3=0\left(2\right)\end{matrix}\right.\)

Từ (2) => \(x=\dfrac{3-4y}{3}\) thay vào (1) ta được:

\(\left(\dfrac{3-4y}{3}\right)^2+y^2-\dfrac{3-4y}{3}-7y=0\)

<=> 16y2-24y+9+9y2-9+12y-63y=0

<=>25y2-75y=0

<=> y=0=>x=1

hoặc y=3=>x=-3

Gọi 2 giao điểm là M và N =>tọa độ M(1;0) và N(-3;3)

b) Viết lại phương trình (C): \(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{7}{2}\right)^2=\dfrac{25}{2}\)

=>tọa độ tâm I(0,5;3,5)

Gọi d1,d2 là các tiếp tuyến tại M và N

VTPT của d1 là: \(\overrightarrow{IM}=\left(\dfrac{1}{2};-\dfrac{7}{2}\right)\) và M thuộc d1

=> phương trình d1: \(\dfrac{1}{2}\left(x-1\right)-\dfrac{7}{2}y=0\)

hay d1: x-7y-1=0

Bằng cách tính tương tự ta được phương trình tiếp tuyến d2:

d2:7x+y+18=0

c)Tọa độ giao điểm d1 và d2 là nghiệm của hệ:

\(\left\{{}\begin{matrix}x-7y-1=0\\7x+y+18=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)

=>tọa độ giao điểm là (-2,5;-0,5)

hieu12
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 3 2022 lúc 6:55

\(y'=6x^2-4x-4\)

\(y'\left(0\right)=-4\)

\(y\left(0\right)=1\)

Do đó pt tiếp tuyến tại điểm có hoành độ x=0 là:

\(y=-4\left(x-0\right)+1\Leftrightarrow y=-4x+1\)

Tuấn Anh
Xem chi tiết
nthv_.
1 tháng 5 2023 lúc 20:50

a.

Ta có: \(\left\{{}\begin{matrix}-4a=-2\\8b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-4\end{matrix}\right.\) \(\Rightarrow I\left(2;-4\right)\)

\(R=\sqrt{2^2+\left(-4\right)^2+5}=5\)

b.

PTTT: \(\left(C\right):\left(a-x_0\right)\left(x-x_0\right)+\left(b-y_0\right)\left(y-y_0\right)=0\)

\(\Leftrightarrow\left(2+1\right)\left(x+1\right)+\left(-4-0\right)\left(y-0\right)=0\)

\(\Leftrightarrow\left(C\right):3x-4y=-3\)

c.

Ta có: \(\Delta\perp d\Rightarrow\Delta:4x+3y+c=0\)

\(d\left(I,\Delta\right):\dfrac{\left|4\cdot2-3\cdot4+c\right|}{\sqrt{4^2+3^2}}=5\)

\(\Leftrightarrow\left|c-4\right|=25\) \(\Leftrightarrow\left[{}\begin{matrix}c=29\\c=-21\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\Delta:4x+3y+29=0\\\Delta:4x+3y-21=0\end{matrix}\right.\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 15:54

Tọa độ tiếp điểm là: \({M_1}\left( {3;5} \right),{M_2}\left( {3; - 12} \right)\)

Phương trình tiếp tuyến của đường tròn đi qua \({M_1}\) là: \( - 5\left( {x - 3} \right) - 12\left( {y - 5} \right) = 0 \Leftrightarrow  - 5x - 12y + 75 = 0\)

Phương trình tiếp tuyến của đường tròn đi qua \({M_2}\) là:

\( - 5\left( {x - 3} \right) + 19(y + 12) = 0 \Leftrightarrow  - 5x + 19y + 243 = 0\)

Ma Ron
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 5 2023 lúc 14:26

(C): x^2-2x+1+y^2+4y+4=9

=>(x-1)^2+(y+2)^2=9

=>I(1;-2); R=3

Khi x=1 và y=5 thì (1-1)^2+(5+2)^2=49<>9

=>A nằm ngoài (C)

Gọi (d): y=ax+b là phương trình tiếp tuyến tại A của (C)

Thay x=1 và y=5 vào (d), ta được:

a+b=5

=>b=5-a

=>y=ax+5-a

=>ax-y-a+5=0

Theo đề, ta có: d(I;(d))=3

=>\(\dfrac{\left|1\cdot a+\left(-2\right)\cdot\left(-1\right)-a+5\right|}{\sqrt{a^2+1}}=3\)

=>9a^2+9=(a+2-a+5)^2

=>9a^2+9=49

=>9a^2=40

=>a^2=40/9

=>\(a=\pm\dfrac{2\sqrt{10}}{3}\)

=>\(b=5\mp\dfrac{2\sqrt{10}}{3}\)

Nguyễn Minh Huy
Xem chi tiết