Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Yến	Nhi
Xem chi tiết
Nguyễn Đăng Nhân
20 tháng 2 2023 lúc 10:52

Tính chất của phân số bạn cần biết như sau:

\(\dfrac{b-a}{a\cdot b}=\dfrac{1}{a}-\dfrac{1}{b}\)

Gọi biểu thức trên là A ,ta có:

\(A=\dfrac{1}{5\cdot9}+\dfrac{1}{9\cdot13}+\dfrac{1}{13\cdot17}+\dfrac{1}{17\cdot21}+\dfrac{1}{21\cdot25}\)

\(4A=\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+\dfrac{4}{13\cdot17}+\dfrac{4}{17\cdot21}+\dfrac{4}{21\cdot25}\)

\(4A=\dfrac{9-5}{5\cdot9}+\dfrac{13-9}{9-13}+\dfrac{17-13}{13\cdot17}+\dfrac{21-17}{17\cdot21}+\dfrac{25-21}{21\cdot25}\)

Áp dụng tính chất phân số đã nêu ở trên, ta được:

\(4A=\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{25}\)

\(4A=\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{5}{25}-\dfrac{1}{25}=\dfrac{4}{25}\)

\(A=4A:4=\dfrac{4}{25}:4=\dfrac{16}{25}\)

Vậy \(A=\dfrac{16}{25}\)

Nguyen Phan Cam Chau
Xem chi tiết
DanAlex
11 tháng 4 2017 lúc 16:05

\(4S=4.\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{21.25}\right)\)

=\(\frac{4}{5.9}+\frac{4}{9.13}+....+\frac{4}{21.25}_{ }\)

=\(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+....+\frac{1}{21}-\frac{1}{23}\)

=\(\frac{1}{5}-\frac{1}{25}=\frac{5}{25}-\frac{1}{25}=\frac{4}{25}\)

=> \(S=\frac{4}{25}:4=\frac{4}{25}.\frac{1}{4}=\frac{1}{25}\)

TXT Channel Funfun
11 tháng 4 2017 lúc 16:09

\(S=\frac{1}{5\times9}+\frac{1}{9\times13}+...+\frac{1}{21\times25}\)

\(S\times4=\frac{4}{5\times9}=\frac{4}{9\times13}+...+\frac{4}{21\times25}\)

\(S\times4=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{21}-\frac{1}{25}\)

\(S\times4=\frac{1}{5}-\frac{1}{25}\)

\(S\times4=\frac{4}{25}\)

\(S=\frac{1}{25}\)

Bùi Đức Anh
11 tháng 4 2017 lúc 16:11

ta có S=  1/5.9+1/9.13+1/13.17+1/17.21+1/21.25

<=>4S=4.(1/5.9+1/9.13+1/13.17+1/17.21+1/21.25)

<=>4S=4/5.9+4/9.13+4/13.17+4/17.21+4/21.25

<=>4S=1/5-1/9+1/9-1/13+1/13-1/17+1/21-1/25

<=>4S=1/5-1/25

<=>4S=4/25

<=>S=4/25:4

<=>S=1/25

vậy S=1/25

Tống Khánh Linh
Xem chi tiết
Đức Minh
29 tháng 3 2017 lúc 17:35

\(A=\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{17\cdot21}< 1\)

\(A=\dfrac{4}{4}\cdot\left(\dfrac{1}{1\cdot5}+\dfrac{1}{5\cdot9}+\dfrac{1}{9\cdot13}+...+\dfrac{1}{17\cdot21}\right)< 1\)

\(A=\dfrac{1}{1}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{17}-\dfrac{1}{21}< 1\)

\(A=1-\dfrac{1}{21}< 1\) (đúng) (đpcm).

Nguyễn Thế Mãnh
29 tháng 3 2017 lúc 17:36

Đề sai

Ha Hoang Vu Nhat
29 tháng 3 2017 lúc 17:46

Ta có: \(\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{17.21}\)

=\(\dfrac{4}{4}.\left(\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{17.21}\right)\)

=\(1\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{17}-\dfrac{1}{21}\right)\)

=\(1-\dfrac{1}{21}\)

\(1-\dfrac{1}{21}\)<1

=>\(\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{17.21}\)<1

phượng nguyễn thanh
Xem chi tiết
Khôi Bùi
8 tháng 4 2022 lúc 0:35

Ta có : \(\left(x-1\right)^2+\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{41.45}=\dfrac{49}{900}\)

\(\Leftrightarrow\left(x-1\right)^2+\dfrac{1}{4}.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}\right)=\dfrac{49}{900}\)

\(\Leftrightarrow\left(x-1\right)^2+\dfrac{1}{4}\left(\dfrac{1}{5}-\dfrac{1}{45}\right)=\dfrac{49}{900}\)

\(\Leftrightarrow\left(x-1\right)^2=\dfrac{1}{100}\)  \(\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{10}\\x-1=-\dfrac{1}{10}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{10}\\x=\dfrac{9}{10}\end{matrix}\right.\)

Vậy ...

nhem
Xem chi tiết
Đặng Phương Thảo
17 tháng 7 2015 lúc 7:28

A= 1/5.9+1/9.13+1/13.17+1/17.21+1/21.25

4A= 4/5.9+4/9.13+4/13.17+4/17.21+4/21.25

4A= (1/5-1/9)+(1/9-1/13)+(1/13-1/17)+(1/17-1/21)+(1/21-1/25)

4A= 1/5- 1/25

4A= 4/25

A= 4/25 :4 

A= 1/25

Nguyễn Thanh Hiền
Xem chi tiết
ST
10 tháng 5 2017 lúc 10:08

\(A=8400\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)

\(=\frac{8400}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+\frac{4}{17.21}+\frac{4}{21.25}\right)\)

\(=2100\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}\right)\)

\(=2100\left(1-\frac{1}{25}\right)\)

\(=2100\cdot\frac{24}{25}\)

\(=2016\)

Nguyễn Hoàng Phúc
10 tháng 5 2017 lúc 10:12

\(A=8400.\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)

\(A=8400.\left(\frac{1.4}{1.5.4}+\frac{1.4}{5.9.4}+\frac{1.4}{9.13.4}+\frac{1.4}{13.17.4}+\frac{1.4}{17.21.4}+\frac{1.4}{21.25.4}\right)\)

\(A=8400.\frac{1}{4}.\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)

\(A=8400.\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}\right)\)

\(A=8400.\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{25}\right)\)

\(A=8400.\frac{1}{4}.\frac{24}{25}\)

\(A=2016\)

VRCT_Hoàng Nhi_BGS
10 tháng 5 2017 lúc 10:13

\(A=8400.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}\right)\) 

\(A=8400.\left(1-\frac{1}{25}\right)\)

\(A=8400.\frac{24}{25}=8064\)

\(->A=8064\)

Ta Chia Tay Đi
Xem chi tiết
Trang
9 tháng 10 2017 lúc 18:43

a) \(\dfrac{x}{2008}-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{21}-...-\dfrac{1}{120}=\dfrac{5}{8}\)

\(\Rightarrow\dfrac{x}{2008}-\left(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\right)=\dfrac{5}{8}\)

\(\Rightarrow\dfrac{x}{2008}-\left(\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\right)=\dfrac{5}{8}\)

\(\Rightarrow\dfrac{x}{2008}-\left(\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\right)=\dfrac{5}{8}\)

\(\Rightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)=\dfrac{5}{8}\)

\(\Rightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)=\dfrac{5}{8}\) \(\Rightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{5}{8}\\ \Rightarrow\dfrac{x}{2008}-2.\dfrac{3}{16}=\dfrac{5}{8}\\ \Rightarrow\dfrac{x}{2008}-\dfrac{3}{8}=\dfrac{5}{8}\\ \Rightarrow\dfrac{x}{2008}=\dfrac{5}{8}+\dfrac{3}{8}\\ \Rightarrow\dfrac{x}{2008}=1\\ \Rightarrow x=2008\)

b) \(\dfrac{7}{x}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+\dfrac{4}{13.17}+...+\dfrac{4}{41.45}=\dfrac{29}{45}\)

\(\Rightarrow\dfrac{7}{x}+\left(\dfrac{4}{5.9}+\dfrac{4}{9.13}+\dfrac{4}{13.17}+...+\dfrac{4}{41.45}\right)=\dfrac{29}{45}\)

\(\Rightarrow\dfrac{7}{x}+\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}\right)=\dfrac{29}{45}\)

\(\Rightarrow\dfrac{7}{x}+\left(\dfrac{1}{5}-\dfrac{1}{45}\right)=\dfrac{29}{45}\\ \Rightarrow\dfrac{7}{x}+\dfrac{8}{45}=\dfrac{29}{45}\\ \Rightarrow\dfrac{7}{x}=\dfrac{29}{45}-\dfrac{8}{45}\\ \Rightarrow\dfrac{7}{x}=\dfrac{21}{45}\\ \Rightarrow\dfrac{7}{x}=\dfrac{7}{15}\\ \Rightarrow x=15\)

c) \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{15}{93}\)

\(\Rightarrow2\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{\left(2x+1\right)\left(2x+3\right)}\right)=\dfrac{15}{93}.2\)

\(\Rightarrow\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{30}{93}\\ \Rightarrow\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2x+1}-\dfrac{1}{2x+3}=\dfrac{10}{31}\)

\(\Rightarrow\dfrac{1}{3}-\dfrac{1}{2x+3}=\dfrac{10}{31}\\ \Rightarrow\dfrac{2x}{3\left(2x+3\right)}=\dfrac{10}{31}\\ \Rightarrow\dfrac{10.3\left(2x+3\right)}{31}=2x\\ \Rightarrow\dfrac{30\left(2x+3\right)}{31}=2x\\ \Rightarrow x=\dfrac{30\left(2x+3\right)}{31}:2\\ \Rightarrow x=\dfrac{30\left(2x+3\right)}{62}\\ \Rightarrow x=\dfrac{15\left(2x+3\right)}{31}\\\Rightarrow\dfrac{15\left(2x+3\right)}{x}=31\\ \Rightarrow\dfrac{30x+45}{x}=31\\ \Rightarrow30+\dfrac{45}{x}=31\\ \Rightarrow \dfrac{45}{x}=1\\ \Rightarrow x=45\)

Nguyễn Thanh Hằng
9 tháng 10 2017 lúc 12:05

a/ \(\dfrac{x}{2008}-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{21}-............-\dfrac{1}{120}=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}-\left(\dfrac{1}{10}+\dfrac{1}{15}+.......+\dfrac{1}{120}\right)=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}-\left(\dfrac{2}{20}+\dfrac{2}{30}+.......+\dfrac{2}{240}\right)=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+.......+\dfrac{1}{15.16}\right)=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{15}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}-\dfrac{3}{16}=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}=\dfrac{13}{16}\)

\(\Leftrightarrow x=1631,5\)

Vậy ..................

Tống Khánh Linh
Xem chi tiết
Jenny Phạm
29 tháng 3 2017 lúc 18:44

Tìm x

\(\dfrac{x}{5}\)=\(\dfrac{x+6}{15}\)

\(\Rightarrow\)\(\dfrac{3x}{15}\)=\(\dfrac{x+6}{15}\)

\(\Rightarrow\)3x = x+6

\(\Rightarrow\)2x=6

\(\Rightarrow\)x=3

TÍNH TỔNG S

S=\(\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{17.21}\)

S=\(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{17}-\dfrac{1}{21}\)

S= \(1-\dfrac{1}{21}\)

S= \(\dfrac{20}{21}\)

Nguyễn Thế Mãnh
29 tháng 3 2017 lúc 17:20

Tìm x:

\(\dfrac{x}{5}=\dfrac{x+6}{15}=>\dfrac{3x}{15}=\dfrac{x+6}{15}\)

=> 3x = 6 + x

=> 2x = 6

=> x = 3

Tính tổng S:

\(S=\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{17.21}\)

\(S=\dfrac{4}{1}-\dfrac{4}{5}+\dfrac{4}{5}-\dfrac{4}{9}+\dfrac{4}{9}-\dfrac{4}{13}+...+\dfrac{4}{17}-\dfrac{4}{21}\)

\(S=4-\dfrac{4}{21}\)

\(S=\dfrac{80}{21}\)

Minh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 3 2022 lúc 21:10

a: \(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{121}-\dfrac{1}{124}=1-\dfrac{1}{124}=\dfrac{123}{124}\)

b: \(=3\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)=3\cdot\dfrac{99}{202}=\dfrac{297}{202}\)

c: \(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-...+\dfrac{1}{401}-\dfrac{1}{405}\right)=\dfrac{1}{4}\cdot\dfrac{404}{405}=\dfrac{101}{405}\)

d: \(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)

Kudo Shinichi AKIRA^_^
1 tháng 3 2022 lúc 21:10

đề bài là j