Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Văn Thị Kim Chi
Xem chi tiết
huong nguyen
Xem chi tiết
Pham Tu Anh
Xem chi tiết
Huỳnh Quang Sang
5 tháng 3 2021 lúc 19:31

Vì \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}}\Rightarrow\left(2x-1\right)^2+\left|y-2\right|\ge0\forall x,y\)

\(\Rightarrow\left(2x-1\right)^2+\left|y-2\right|+2020\ge2020\forall x,y\)

Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(2x-1\right)^2=0\\\left|y-2\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}2x-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=2\end{cases}}\)

Vậy GTNN của B bằng 2020 khi x = 1/2,y = 2

Khách vãng lai đã xóa
Ha Linh Trân
Xem chi tiết
tthnew
11 tháng 8 2019 lúc 16:53

Ta có: \(E=2x^2+2x\left(y+3\right)+2y^2+2020\)

\(=2\left(x^2+2.x.\frac{\left(y+3\right)}{2}+\frac{\left(y+3\right)^2}{4}\right)+2y^2+2020-\frac{\left(y+3\right)^2}{2}\)

\(=2\left(x+\frac{y+3}{2}\right)^2+\frac{3y^2-6y+4031}{2}\)

\(=2\left(x+\frac{y+3}{2}\right)^2+\frac{3\left(y-1\right)^2+4028}{2}\ge\frac{4028}{2}=2014\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=-\frac{y+3}{2}\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)

Vậy...

GamingDudex
Xem chi tiết
Minh Hiếu
6 tháng 2 2022 lúc 9:16

+) \(A=\left(x-3\right)^2+2\)

Vì \(\left(x-3\right)^2\)≥0 ∀x

\(A\)≥2 ∀x

Min A=2⇔\(x=3\)

+) \(B=11-x^2\)

Câu này chỉ tìm được max thôi nha

Lương Đại
6 tháng 2 2022 lúc 9:16

\(A=\left(x-3\right)^2+2\)

Vì \(\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2+2\ge2\)

Vậy GTNN của A là 2 khi x = 3

 

My Trà
Xem chi tiết
missing you =
26 tháng 7 2021 lúc 15:56

\(a,=x^2+2x+1+2019=\left(x+1\right)^2+2019\ge2019\) dấu"=" xảy ra<=>x=-1

b,\(=m^2+2.2m+4-5=\left(m+2\right)^2-5\ge-5\) dấu"=" xảy ra<=>m=-2

c, \(=x-2\sqrt{x}+10=x-2\sqrt{x}+1+9=\left(\sqrt{x}-1\right)^2+9\ge9\)

dấu"=" xảy ra<=>x=1

b, \(4x-8\sqrt{x}+2020=4x-2.2.2\sqrt{x}+4+2016=\left(2\sqrt{x}-2\right)^2+2016\ge2016\)

dấu"=" xảy ra<=>x=1

Trên con đường thành côn...
26 tháng 7 2021 lúc 15:56

undefined

Nguyễn Lê Phước Thịnh
26 tháng 7 2021 lúc 23:08

a) Ta có: \(x^2+2x+2020\)

\(=x^2+2x+1+2019\)

\(=\left(x+1\right)^2+2019\ge2019\forall x\)

Dấu '=' xảy ra khi x=-1

b) Ta có: \(m^2+4m-1\)

\(=m^2+4m+4-5\)

\(=\left(m+2\right)^2-5\ge-5\forall m\)

Dấu '=' xảy ra khi m=-2

c) Ta có: \(m^2+m\)

\(=m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}\)

\(=\left(m+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\forall m\)

Dấu '=' xảy ra khi \(m=-\dfrac{1}{2}\)

bui huy quy duong
Xem chi tiết
Ngô Thị Yến
28 tháng 10 2016 lúc 22:42

Ta có

A=2x2+4y2-4x+4xy+2020

=(x^2+4y^2+4xy)+(x^2-4x+4)+2016

=(x+2y)^2+(x-2)^2+2016

Thấy

(x+2y)^2>=0 với mọi x,y

(x-2)^2>=0 với mọi x

=>(x+2y)^2+(x-2)^2+2016>=2016 với mọi x,y

Hay Min A>=2016

Dấu "=" xảy ra<=>(x+2y)^2=0 và(x-2)^2=0

<=>x=2;y=-1

Vậy Min A=2016 tại x=2 và y=-1

Law Trafargal
Xem chi tiết
Linh
Xem chi tiết
Nguyên
18 tháng 3 2018 lúc 14:59

Ta Có :

\(M=x^2+2y^2+2xy-2x-6y+2020\)

\(M=\left(x^2+2xy-2x\right)+2y^2-6y+2020\)

\(M=\left(x^2+2x\left(y-1\right)+\left(y-1\right)^2\right)+2y^2-6y+2020-\left(y-1\right)^2\)

\(M=\left(x+y-1\right)^2+2y^2-6y-y^2+2y-1+2020\)

\(M=\left(x+y-1\right)^2+\left(y^2-4y+4\right)+2015\)

\(M=\left(x+y-1\right)^2+\left(y-2\right)^2+2015\)

Nhận xét : Vì \(\left(x+y-1\right)^2\ge0\) với \(\forall x,y\)

\(\left(y-2\right)^2\ge0\) với \(\forall y\)

\(\Rightarrow M\ge2015\) với \(\forall x,y\)

Vậy GTNN của M là 2015 đạt được khi

\(\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

tik mik nha !!!

Anh Pha
2 tháng 12 2017 lúc 20:35

x2 + 2y2 + 2xy - 2x - 6y + 2020

= x2 + 2xy + y2 + y2 - 2x - 6y + 2020

= (x+y)2 + y2 - 4y + 4 - 2x - 2y + 2016

= (x+y)2 + (y-z)2 - 2(x+y) + 2016

= (x+y)2 - 2(x+y) + 1 + (y-z)2 + 2015

= (x+y-1)2 + (y-z)2 + 2015 ≥ 2015

Dấu "=" xảy ra khi x+y-1=0 và y-2=0

(=) x=-1 y=2

Vậy GTNN của biểu thức trên là 2015 khi x=-1 và y=2

Chúc bạn học tốt ^^