Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thị Quốc Khánh
Xem chi tiết
HELLO^^^$$$
6 tháng 4 2021 lúc 19:16

3.(1/4.5+1/5.6+...+1/9.10).x=9/2

3.(1/4-1/5+1/5-1/6+...+1/9-1/10).x=9/2

3.(1/4-1/10).x=9/2

3.3/20.x=9/2

9/20.x=9/2

x=9/2:9/20

x=10

Trương Ngọc Linh
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
16 tháng 7 2023 lúc 12:24

`@` `\text {Ans}`

`\downarrow`

`a)`

\(A=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}\)

`=`\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

`=`\(\dfrac{1}{3}-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-...-\dfrac{1}{9}\)

`=`\(\dfrac{1}{3}-\dfrac{1}{9}\)

`=`\(\dfrac{2}{9}\)

Vậy, \(A=\dfrac{2}{9}\)

`b)`

\(B=\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+...+\dfrac{1}{23\cdot24}+\dfrac{1}{24\cdot25}\)

`=`\(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{24}-\dfrac{1}{25}\)

`=`\(\dfrac{1}{5}-\left(\dfrac{1}{6}-\dfrac{1}{6}\right)-\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-...-\dfrac{1}{25}\)

`=`\(\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{4}{25}\)

Vậy, \(B=\dfrac{4}{25}\)

`c)`

\(C=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)

`=`\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

`=`\(1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-...-\dfrac{1}{100}\)

`=`\(1-\dfrac{1}{100}=\dfrac{99}{100}\)

Vậy, \(C=\dfrac{99}{100}\)

Matsumi
Xem chi tiết
Nhã Doanh
3 tháng 4 2018 lúc 9:45

a)

\(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{24.25}\)

\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{24}-\dfrac{1}{25}\)

\(=\dfrac{1}{5}-\dfrac{1}{25}\)

\(=\dfrac{4}{25}\)

b)

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.101}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}\)

\(=\dfrac{100}{101}\)

Phạm Hải
3 tháng 4 2018 lúc 9:59

a) \(\dfrac{1}{5.6}=\dfrac{1}{5}-\dfrac{1}{6}\)

\(\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{24.25}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{24}-\dfrac{1}{25}=\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{4}{25}\)b) \(\dfrac{2}{1.3}=1-\dfrac{1}{3}\)

tương tự

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)

Nguyễn Thị Diệu Ly
Xem chi tiết
HELLO^^^$$$
23 tháng 3 2021 lúc 8:02

A=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

A=1-1/100                            A=99/100                                                                                    B= (1/5.6+1/6/7+...+1/101.102).3                         B=(1/5-1/6+1/6-1/7+...+1/101-1/102).3        B=(1/5-1/102).3                                                 B=97/170                                                            

Nguyễn Lê Phước Thịnh
23 tháng 3 2021 lúc 22:47

1) Tính

a) Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)

Nguyễn Văn Phúc Lâm
Xem chi tiết

B = \(\dfrac{1}{3.4}\) - \(\dfrac{1}{4.5}\) - \(\dfrac{1}{5.6}\) - \(\dfrac{1}{6.7}\) - \(\dfrac{1}{7.8}\) - \(\dfrac{1}{8.9}\) - \(\dfrac{1}{9.10}\)

B = \(\dfrac{1}{12}\) - ( \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + \(\dfrac{1}{7.8}\) + \(\dfrac{1}{8.9}\) + \(\dfrac{1}{9.10}\))

B = \(\dfrac{1}{12}\) - ( \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) - \(\dfrac{1}{10}\))

B =  \(\dfrac{1}{12}\) - ( \(\dfrac{1}{4}\) - \(\dfrac{1}{10}\)

B = \(\dfrac{1}{12}\) - \(\dfrac{3}{20}\) 

B = - \(\dfrac{1}{15}\)

nguyen quynh my
Xem chi tiết
Huỳnh Châu
11 tháng 5 2017 lúc 9:29

B = \(\dfrac{2}{3.4}+\dfrac{2}{4.9}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+\dfrac{2}{7.8}\)

= \(2.\left(\dfrac{1}{3.4}+\dfrac{1}{4.9}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\right)\)

= \(2.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\right)\)

= \(2.\left(\dfrac{1}{3}-\dfrac{1}{9}-\dfrac{1}{8}\right)\)

= \(2.\dfrac{7}{72}\)

= \(\dfrac{7}{36}\)

Sunini Huyền
11 tháng 5 2017 lúc 8:42

A=3.97274066919

Đoàn Như Trang
Xem chi tiết
Nguyễn Thanh Hằng
29 tháng 3 2018 lúc 15:26

1/ \(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right).........\left(1-\dfrac{1}{100}\right)\)

\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\left(\dfrac{3}{3}-\dfrac{1}{3}\right).........\left(\dfrac{100}{100}-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}...............\dfrac{99}{100}\)

\(=\dfrac{1}{100}\)

2/ \(\dfrac{1}{5.6}+\dfrac{1}{6.7}+.........+\dfrac{1}{99.100}\)

\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+........+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=\dfrac{1}{5}-\dfrac{1}{100}\)

\(=\dfrac{19}{100}\)

Nguyễn Duy Khang
29 tháng 3 2018 lúc 15:41

1. \(\left(1-\dfrac{1}{2}\right)\) \(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\) \(...\left(1-\dfrac{1}{99}\right)\left(1-\dfrac{1}{100}\right)\)

\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\left(\dfrac{3}{3}-\dfrac{1}{3}\right)\left(\dfrac{4}{4}-\dfrac{1}{4}\right)...\left(\dfrac{99}{99}-\dfrac{1}{99}\right)\left(\dfrac{100}{100}-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{98}{99}.\dfrac{99}{100}\)

\(=\dfrac{1}{100}\)

2. \(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)

\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=\dfrac{1}{5}-\dfrac{1}{100}\)

\(=\dfrac{20}{100}\) \(-\dfrac{1}{100}\)

\(=\dfrac{19}{100}\)

Nguyễn Trọng Đức
Xem chi tiết
Trang
5 tháng 3 2017 lúc 21:48

đặt \(M=\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}+\dfrac{15}{7.8}-\dfrac{17}{8.9}+\dfrac{19}{9.10}\)

ta có:

\(M=\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}+\dfrac{15}{7.8}-\dfrac{17}{8.9}+\dfrac{19}{9.10}\)

\(\Leftrightarrow M=\dfrac{3+4}{3.4}-\dfrac{4+5}{4.5}+\dfrac{5+6}{5.6}-\dfrac{6+7}{6.7}+\dfrac{7+8}{7.8}-\dfrac{8+9}{8.9}+\dfrac{9+10}{9.10}\) \(\Leftrightarrow M=\dfrac{3}{3.4}+\dfrac{4}{3.4}-\dfrac{4}{4.5}-\dfrac{5}{4.5}+\dfrac{5}{5.6}+\dfrac{6}{5.6}-\dfrac{6}{6.7}-\dfrac{7}{6.7}+\dfrac{7}{7.8}+\dfrac{8}{7.8}-\dfrac{8}{8.9}-\dfrac{9}{8.9}+\dfrac{9}{9.10}+\dfrac{10}{9.10}\) \(\Rightarrow M=\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{4}+\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{6}+\dfrac{1}{8}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{8}+\dfrac{1}{10}+\dfrac{1}{9}\) \(\Rightarrow M=\dfrac{1}{3}+\dfrac{1}{10}\)

\(\Rightarrow M=\dfrac{10}{30}+\dfrac{3}{30}\)

\(\Rightarrow M=\dfrac{13}{30}\)

vậy M = \(\dfrac{13}{30}\)

vậy \(\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}+\dfrac{15}{7.8}-\dfrac{17}{8.9}+\dfrac{19}{9.10}=\dfrac{13}{30}\)

Nguyễn Tiến Dũng
5 tháng 3 2017 lúc 21:32

\(\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}+\dfrac{15}{7.8}-\dfrac{17}{8.9}+\dfrac{19}{9.10}=\dfrac{3+4}{3.4}-\dfrac{4+5}{4.5}+\dfrac{5+6}{5.6}-\dfrac{6+7}{6.7}+\dfrac{7+8}{7.8}-\dfrac{8+9}{8.9}+\dfrac{9+10}{9.10}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{1}{3}-\dfrac{1}{10}=\dfrac{7}{30}\)

Sukura Minamoto
Xem chi tiết
Nguyễn Thị Diễm Quỳnh
16 tháng 4 2017 lúc 18:17

Ta có:

\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}=\dfrac{9}{10}\)