Gía trị của x biết
x=y/3 =x/5 và x + y - z = 2
Gía trị x-y+z biết: x/2=y/3=z/5 và x+y-z= -90
Gía trị x-y+z biết:
x/2=y/3=z/5 và x+y-z = -90
\(\dfrac{x}{2}\), \(\dfrac{y}{3}\), \(\dfrac{z}{4}\) x + y - z = 3. Gía trị của x, y và z
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{x+y-z}{2+3-4}=\dfrac{3}{1}=3\)
⇒ \(x=2.3=6\)
⇒ \(y=3.3=9\)
⇒ \(z=4.3=12\)
x/2=y/3=z/4 =x+y-z/2+3-4=3/1=3
=> x/2=3 <=> x=6
y/3=3 <=> x=9
z/4=3 <=> x=12
Hơi khó nhìn mong bạn thông cảm nha! Mik ko biết gõ Talex =))
Cho x,y.z thỏa mãn x/2=y/3,y/4=z/5 và x+y-z=10.Gía trị x,y,z là
A.x=16;y=24;z=30
B.x=30;y=24;z=16
C.x=2;y=3;z=5
D.x=24;y=16;z=30
Theo bài ra ta cs
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1) ; (2) => \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\Rightarrow\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}}\)
Như vậy ta chọn : A
cho x,y,z thỏa mãn (x+10)/7=(y+6)/9=(27-z)/11 và 3.x^3+7=199 .Gía trị của tổng x+y+z= ?
Bạn tính x ra sau đó từ tỉ lệ thức ta tính ra đc y và z.
Mình gợi ý nha:
Bạn tính x từ phép tính 3.x3+7=199 (bằng 4)
Rồi bạn tính (x+10)/7 (bằng 2)
Từ đó ta có y+6=18 và 27-z=22
Tính y;z
Tính x+y+z.
a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=\left(x-y\right)\left(x-y+2\right)+37\)(1)
Thay x-y=7 vào biểu thức (1), ta được:
\(A=7\cdot\left(7+2\right)+37=7\cdot9+37=100\)
Vậy: Khi x-y=7 thì A=100
b) Ta có: \(x+y=2\)
\(\Leftrightarrow\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow2xy+10=4\)
\(\Leftrightarrow2xy=-6\)
\(\Leftrightarrow xy=-3\)
Ta có: \(A=x^3+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)(2)
Thay x+y=2; \(x^2+y^2=10\) và xy=-3 vào biểu thức (2), ta được:
\(A=2\cdot\left(10+3\right)=2\cdot13=26\)
Vậy: Khi x+y=2 và \(x^2+y^2=10\) thì A=26
\(\Rightarrow A=x^2+2x+y^2-2y-2xy+37=x^2-2xy+y^2+2\left(x-y\right)+37=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2\cdot7+37=100\)
\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[x^2+y^2-\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}\right]=2\cdot\left[10+3\right]=2\cdot13=26\) \(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\) \(\Rightarrow P=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)=-\dfrac{z}{y}\cdot\dfrac{-x}{z}\cdot-\dfrac{y}{x}=-1\)
Câu 14: tìm x,y biết
x/2 = y/3 = z/4 và 2x + 3y - z = 27
ta có : `x/2 = y/3 = z/4=> (2x)/4 =(3y)/9 = z/4`
`=> (2x)/4 =(3y)/9 = z/4` và `2x + 3y - z = 27`
Áp dụng t/c dãy tỉ số bằng nhau ta có:
`(2x)/4 =(3y)/9 = z/4 =(2x + 3y - z)/(4+9-4)=27/9=3`
`=>x/2=3=>x=3.2=6`
`=>y/3=3=>x=3.3=9`
`=>z/4=3=>z=3.4=12`
tìm các số hữu tỉx,y,z biếtx(x+y+z=-5;y(x+y+z)=9;z(x+y+z)=5
Vòng 16
Bài 1
Tìm các cặp bằng nhau
Gía trị của biểu thức x^2y^2-y^3 tại x =4 va y = -1 | Gía trị của x thõa mãn x : y = 3: 7 và 3x + y = 496 | Gía trị của biểu thức 9 + 11x - 8x^2 tại x= -2 |
Độ dài cạnh đáy (cm) của ram giác cân có cạnh bên là 32,5 cm và đường cao tương ứng với đáy là 26cm | Gía trị của biểu thức 21.3^4.x^5-1/9:x^4 Tại x = -1/3 | \(\frac{9^6}{162.81^2}-\sqrt{\frac{1}{4}}\) |
Gía trị của biểu thức 12x^3 - 8x^2 +x tại x = 1/2 | Đông dài cạnh huyền (cm) của tam giác vuông có hai cạnh góc vuông bằng 8cm và 15cm | Gía trị của biểu thức 1/5 ( x^3y - xy^3 ) - y^2 tại x = 5 và y = 3 |
Gía trị y<0 thõa mẵn x/2 = y/9 và xy =450 | Gía trị của biểu thức 4y^3 - 5y tại y = 3 | Gía trị của biểu thức xy ( 2x + y ) - ( x^2y + xy^2 ) tại x = -8 và y =-1/4 |
Copy violympic kiểu gì vậy chỉ tớ vói tớ làm rồi mà ko được!