tiìm GTLN B=-x^2+6x-11
tiìm GTLN của x^2+17/x^2+7
Tiìm x để 3x^2-4x+7/3x^2-4x+5 đạt GTLN
đK;
có \(A=\dfrac{3x^2-4x+7}{3x^2-4x+5}\)
\(=>A\)\(=\dfrac{3\left(x^2-2.\dfrac{2}{3}x+\dfrac{4}{9}+\dfrac{17}{9}\right)}{3\left(x^2-2.\dfrac{2}{3}x+\dfrac{4}{9}+\dfrac{11}{9}\right)}\)\(=\dfrac{\left(x-\dfrac{2}{3}\right)^2+\dfrac{17}{9}}{\left(x-\dfrac{2}{3}\right)^2+\dfrac{11}{9}}\)
\(=\dfrac{\left(x-\dfrac{2}{3}\right)^2+\dfrac{11}{9}+\dfrac{6}{9}}{\left(x-\dfrac{2}{3}\right)^2+\dfrac{11}{9}}=1+\dfrac{\dfrac{6}{9}}{\left(x-\dfrac{2}{3}\right)^2+\dfrac{11}{9}}\)
\(\le1+\dfrac{6}{11}=\dfrac{17}{11}\) dấu "=" xảy ra<=>x=2/3
Tiìm GTLN hoặc GTNN của biểu thức: C=2x+1/x^2+2
\(C=\dfrac{x^2+2-\left(x^2-2x+1\right)}{x^2+2}=1-\dfrac{\left(x-1\right)^2}{x^2+2}\le1\)
\(C_{max}=1\) khi \(x=1\)
\(C=\dfrac{4x+2}{2\left(x^2+2\right)}=\dfrac{-x^2-2+x^2+4x+4}{2\left(x^2+2\right)}=-\dfrac{1}{2}+\dfrac{\left(x+2\right)^2}{x^2+2}\ge-\dfrac{1}{2}\)
\(C_{min}=-\dfrac{1}{2}\) khi \(x=-2\)
Nhập Mode 7 , chạy trong khoản trung lập (-10;10)
tìm đc \(\begin{cases} C max = 1 khi x=1\\C min =-\dfrac{1}{2} khi x=-2 \end{cases}\)
Dùng cách này bạn giải trắc nghiệm sẽ nhanh hơn
tìm GTLN,GTNN của biểu thức:
a) x^2-6x+11 b) -x^2+6x-11
khai triển hằng đẳng thức số một và 2 bạn ơi
a)\(x^2-6x+11\)
\(=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
Dấu "="xảy ra khi x=3
b)\(-x^2+6x-11\)
\(=-\left(x^2-6x+9\right)-2\)
\(=-\left(x-3\right)^2-2\le-2\)
Dấu "=" xảy ra khi x=3
Tim GTNN va GTLN :
b)N=12x+34/x^2+2
b)A=6x+8/x^2+1
c)B=6x+11/x^2-2x+3
d)N=6x+17/x^2+2
Tim GTNN va GTLN :
b)N=12x+34/x^2+2
b)A=6x+8/x^2+1
c)B=6x+11/x^2-2x+3
d)N=6x+17/x^2+2
Tìm GTNN và GTLN của biểu thức : B=6x+11/x^2-2x+3
N=6x+17/x^2+2
B= 6x+11/x^2-2x+3
= 9(x^2-2x+3)-9x^2+18x-27+6x+11/ x^2-2x+3
= 9 +
-(3x-4)^2/(x-1)^2+2
Vì (3x-4)^2 > hoặc = 0 với mọi x
=> -(3x-4)^2< hoặc =0
(x-1)^2+2>0 với mọi x
=> -(3x-4)^2/(x-1)^2+2< hoặc=0
=> B< hoặc =9
Vậy GTLN của B=9 khi x=4/3
Làm tương tự ta có gtnn của B=-1/2 khi x=-5
Chúc bạn học tốt!
Phần tìm gtnn của B:
Tách 6x+11=
-1(x^2-2x+3)/2
+ x^2/2 -x+3/2 + 6x+1
=> B= -1/2
+ (x^2+10x+25)/2(x^2-2x+3)
=> B> hoặc =-1/2
Vậy GTNN của B=-1/2 khi x=-5
Chúc bạn học tốt!
Tim GTLN , GTNN
a) x^2 - 6x + 11
b) - x^2 + 6x -11
( Nếu có thể xin mấy bạn chỉ mình cách làm dạng bài này )
a) = \(x^2-6x+11\)
= \(x^2-2.3x+3^2+2\)
= \(\left(x-3\right)^2+2\ge2\left(do\left(x-3\right)^2\ge0\right)\)
Vậy min = 2 khi x-3=0<=> x=3
b) = \(-\left(x^2-6x+11\right)\)
= \(-\left(x^2-2.x.3+3^2\right)-2\)
= \(-2-\left(x-3\right)^2\le-2\left(do\left(x-3\right)^2\ge0\right)\)
Vậy max=-2 khi x-3 =0 <=> x=3
Chắc chắn đúng. mik nhé! Tks banj~~~ (:
Dạng bài này phải là dễ, à k phải nói là quá dễ. Do tối rồi nên mình chỉ có thể giải giúp bạn bài tập thôi, còn muốn mình giảng thì nhắn tin riêng cho mình nhé! :")
A = x^2 - 6x + 11 = (x^2 - 6x + 9 ) + 2 = (x-3)^2 + 2
Vì (x-3)^2 >/= 0 với mọi x nên A=(x-3)^2 +2 >/= 2
Suy ra GTNN của A bằng 2 khi : x - 3 =0 hay x=3
Bài 6: a)Tìm GTLN, GTNN của biểu thức sau:
a. x2 – 6x +11 b. –x2 + 6x – 11
c) Chứng minh rằng: x2 + 2x + 2 > 0 với x Z
c: \(=\left(x+1\right)^2+1>0\forall x\)
Trả lời:
a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của biểu thức bằng 2 khi x = 3
b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTLN của biểu thức bằng - 2 khi x = 3
c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\) (đpcm)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1