Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Đăng Nhất
Xem chi tiết
Isolde Moria
1 tháng 10 2016 lúc 19:11

Ta có 

\(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{9}-\frac{1}{10}\)

\(=2-\frac{1}{10}\)

\(=\frac{19}{10}\)

Vậy \(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}\)\(=\frac{19}{10}\)

Đậu Mạnh Dũng
Xem chi tiết
Nguyễn Tuấn Minh
19 tháng 4 2017 lúc 22:19

\(=\frac{1}{1.2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{10}\)

\(=\frac{1}{10}\)

lê thị linh
19 tháng 4 2017 lúc 22:17

(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-......+1/9-1/10)

1-1/10=9/10

nhớ cho mk

Eri l chan l love l Kiri...
Xem chi tiết
Aimee
9 tháng 3 2017 lúc 12:55

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+...+\left(\frac{1}{9}-\frac{1}{10}\right)\) 
\(A=1-\frac{1}{10}\)
\(A=\frac{9}{10}\)

Trần Thị Uyên Như
9 tháng 3 2017 lúc 12:50

dế mà em, giải thế này nè

A=1-1/2 +1/2-1/3 +1/3-1/4 +......+1/9-1/10

A=1-1/10+9/10

Nguyễn Tuấn Anh
9 tháng 3 2017 lúc 12:52

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}\)\(+...+\frac{1}{9}-\frac{1}{10}\)

\(A=\frac{1}{1}-\frac{1}{10}=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)

GT 6916
Xem chi tiết
I don
15 tháng 7 2018 lúc 17:13

\(\frac{1}{9.10}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{6.7}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)

\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)+\frac{1}{9.10}\)

\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)+\frac{1}{90}\)

\(=-\left(1-\frac{1}{10}\right)+\frac{1}{90}\)

\(=-\frac{9}{10}+\frac{1}{90}\)

= ...

bn tự tính nha!
 

Cute Trường
Xem chi tiết
Dương Huyền Diệp
28 tháng 3 2019 lúc 21:47

undefined

Đỗ Thị Thanh Hà
28 tháng 3 2019 lúc 21:50

Có: A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

A=\(1-\frac{1}{10}\)

A=\(\frac{9}{10}\)

Vậy A=\(\frac{9}{10}\)

lengocanh
10 tháng 5 2019 lúc 7:35

= \(\frac{1}{1}\) - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\) + ... + \(\frac{1}{9}\) - \(\frac{1}{10}\) = \(\frac{1}{1}\) - \(\frac{1}{10}\) = \(\frac{9}{10}\)

Đặng Thị Mai Nga
Xem chi tiết
Inosuke Hashibira
3 tháng 12 2019 lúc 21:52

Bài làm

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{1}-\frac{1}{10}\)

\(=\frac{10}{10}-\frac{1}{10}\)

\(=\frac{9}{10}\)

Vậy giá trị của biểu thức trên bằng \(\frac{9}{10}\).

# Học tốt #

Khách vãng lai đã xóa
Eren
3 tháng 12 2019 lúc 21:51

\(S=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{10-9}{9.10}=\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+...+\frac{10}{9.10}-\frac{9}{9.10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)

Khách vãng lai đã xóa
Vũ Minh Tuấn
3 tháng 12 2019 lúc 21:55

Chúc bạn học tốt!

Khách vãng lai đã xóa
Tạ Thùy Dương
Xem chi tiết
Nguyễn Tiến Dũng
22 tháng 5 2017 lúc 14:20

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

Mạnh Lê
22 tháng 5 2017 lúc 14:21

Đây là tính chứ chứng minh cái gì ? 

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

tth_new
22 tháng 5 2017 lúc 14:25

Lập luận: 1/1.2 = 1/1 - 1/2 ; 1/2.3 = 1/2 - 1/3 ; 1/3.4 = 1/3 - 1/4 ; làm tương tự với các số kia.

Ta có: 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10

= 1 - 1/10

= 9/10

Trần Nhật Minh
Xem chi tiết
Minh Hiền
2 tháng 2 2016 lúc 15:07

\(\text{Đề }\Leftrightarrow\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right).\left(x-1\right)=x-\frac{1}{3}\)

=> \(\left(1-\frac{1}{10}\right).\left(x-1\right)=x-\frac{1}{3}\)

=> \(\frac{9}{10}.\left(x-1\right)=x-\frac{1}{3}\)

=> \(\frac{9x}{10}-\frac{9}{10}=\frac{3x-1}{3}\)

=> \(\frac{27x}{30}-\frac{27}{30}=\frac{10.\left(3x-1\right)}{30}\)

=> 27x - 27 = 30x - 10

=> 27x - 30x = -10 + 27

=> -3x = 17

=> x = -17/3.

Minfire
Xem chi tiết
giang ho dai ca
6 tháng 6 2015 lúc 15:51

\(M=\frac{1}{9.10}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\right)=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\right)=\frac{1}{90}-\left(1-\frac{1}{9}\right)=\frac{1}{90}-\frac{8}{9}=-\frac{79}{90}\)

lê thị thu hiền
15 tháng 7 2018 lúc 17:47

yyyyyyyyyyyyyyyyyyyyyyyyyyyy

Mai Văn Tài
23 tháng 7 2018 lúc 20:49

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000