phân tích 2 đa thức sau thành nhân tử :a)\(x^2+4x-5\) ; b)\(4x^2-y^2+6y-9\)
Bài 1 : Phân tích các đa thức sau thành nhân tử :
1) 15x + 15y 2) 8x - 12y
3) xy - x 4) 4x^2- 6x
Bài 2 : Phân tích các đa thức sau thành nhân tử :
1) 2(x + y) - 5a(x + y) 2) a^2(x - 5) - 3(x - 5)
3) 4x(a - b) + 6xy(a - b) 4) 3x(x - 1) + 5(x -1)
Bài 3 : Tính giá trị của biểu thức :
1) A = 13.87 + 13.12 + 13
2) B = (x - 3).2x + (x - 3).y tại x = 13 và y = 4
Bài 4 : Tìm x :
1) x(x - 5) - 2(x - 5) = 0 2) 3x(x - 4) - x + 4 = 0
3) x(x - 7) - 2(7 - x) = 0 4) 2x(2x + 3) - 2x - 3 = 0
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Phân tích các đa thức sau thành nhân tử:
a) \(4x^2+81\)
b) \(x^7+x^2+1\)
a) Ta thấy đa thức \(f\left(x\right)=4x^2+81\) vô nghiệm (*).
Giả sử \(f\left(x\right)\) có thể phân tích được thành nhân tử, khi đó \(f\left(x\right)=\left(ax+b\right)\left(cx+d\right)\), suy ra \(f\) có nghiệm là \(x=-\dfrac{b}{a}\) hoặc \(x=-\dfrac{d}{c}\), mâu thuẫn với (*).
Vậy ta không thể phân tích \(f\left(x\right)\) thành nhân tử.
b) \(g\left(x\right)=x^7+x^2+1\)
\(g\left(x\right)=x^7-x+x^2+x+1\)
\(g\left(x\right)=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
Xét \(h\left(x\right)=x^5-x^4+x^2-x+1\), nếu \(h\left(x\right)\) phân tích được thành nhân tử thì nó có nghiệm hữu tỉ. Khi đó nó có dạng \(x=\dfrac{p}{q},\left(p,q\inℤ;\left(p,q\right)=1\right),p|1,q|1\) \(\Rightarrow x=\pm1\). Ta thấy \(h\left(1\right).h\left(-1\right)\ne0\) nên 2 nghiệm này không thỏa mãn. Vậy h(x) không có nghiệm hữu tỉ \(\Rightarrow\) g(x) không thể phân tích tiếp.
a)
\(4x^2+81\\=(2x)^2+2\cdot2x\cdot9+9^2-36x\\=(2x+9)^2-36x\)
Bạn xem lại đề bài nhé!
b)
\(x^7+x^2+1\\=(x^7+x^6+x^5)-x^6-x^5-x^4+(x^4+x^3+x^2)-(x^3-1)\\=x^5(x^2+x+1)-x^4(x^2+x+1)+x^2(x^2+x+1)-(x-1)(x^2+x+1)\\=(x^2+x+1)(x^4-x^4+x^2-x+1)\)
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
phân tích các đa thức sau thành nhân tử:
2y ( x+2) -3x - 6
3 (x+4) -x^2 - 4x
2 (x+5) -x^2 -4x
x^2 + 6x -3x -18
a: \(2y\left(x+2\right)-3x-6\)
\(=2y\left(x+2\right)-3\left(x+2\right)\)
\(=\left(x+2\right)\left(2y-3\right)\)
b: \(3\left(x+4\right)-x^2-4x\)
\(=3\left(x+4\right)-\left(x^2+4x\right)\)
\(=3\left(x+4\right)-x\left(x+4\right)\)
\(=\left(x+4\right)\left(3-x\right)\)
c: \(2\left(x+5\right)-x^2-4x\)
\(=2x+10-x^2-4x\)
\(=-x^2-2x+10\)
\(=-x^2-2x-1+11\)
\(=11-\left(x^2+2x+1\right)\)
\(=11-\left(x+1\right)^2\)
\(=\left(\sqrt{11}-x-1\right)\left(\sqrt{11}+x+1\right)\)
d: \(x^2+6x-3x-18\)
\(=\left(x^2+6x\right)-\left(3x+18\right)\)
\(=x\left(x+6\right)-3\left(x+6\right)\)
\(=\left(x+6\right)\left(x-3\right)\)
phân tích đa thức sau thành nhân tử: a, x^2+4x+3
\(x^2+4x+3\)
\(=x^2+x+3x+3\)
\(=\left(x^2+x\right)+\left(3x+3\right)\)
\(=x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
a. \(x^2+4x+3\)
\(\Leftrightarrow x^2+x+3x+3\)
\(\Leftrightarrow x\left(x+1\right)+3\left(x+1\right)\)
\(\Leftrightarrow\left(x+3\right)\left(x+1\right)\)
bài 5; phân tích đa thức sau thành nhân tử
x2+4x+3
\(x^2+4x+3\)
\(=x^2+3x+x+3\)
\(=\left(x^2+x\right)+\left(3x+3\right)\)
\(=x.\left(x+1\right)+3.\left(x+1\right)\)
\(=\left(x+3\right).\left(x+1\right)\)
Phân tích đa thức sau thành nhân tử:
1)a^2 - b^2 - 12a + 12b.
2)4x^2 - 4x + 1 - 25y^2.
3)x^2 - 3x -10.
\(1,a^2-b^2-12a+12b=\left(a-b\right)\left(a+b\right)-12\left(a-b\right)=\left(a-b\right)\left(a+b-12\right)\\ 2,4x^2-4x+1-25y^2=\left(2x-1\right)^2-\left(5y\right)^2=\left(2x-5y-1\right)\left(2x+5y-1\right)\\ c,x^2-3x-10=\left(x^2-5x\right)+\left(2x-10\right)=x\left(x-5\right)+2\left(x-5\right)=\left(x-5\right)\left(x+2\right)\)
Phân tích đa thức sau thành nhân tử
x^3+4x^2-19x+24
Đa thức đã cho không phân tích thành nhân tử được
*Đoán nghiệm sử dụng tính chất của đa thức:
Ta dễ dàng nhận thấy đa thức \(P\left(x\right)=x^3+4x^2-19x+24\) không có nghiệm là \(\pm1\).
Giả sử \(P\left(x\right)\) có nghiệm hữu tỉ dạng \(\dfrac{p}{q}\left(p,q\inℤ\right)\), không mất tổng quát giả sử \(q>0\). Khi đó \(p|24\), \(q|1\) \(\Rightarrow q=1\).
Khi đó do \(P\left(x\right)\) không có nghiệm là \(\pm1\) nên \(p\in\left\{\pm2,\pm3,\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)
Thử lại, ta thấy không có số \(p\) nào thỏa mãn \(\dfrac{p}{q}\) là nghiệm của P(x). Vậy đa thức \(P\left(x\right)\) không có nghiệm hữu tỉ \(\Rightarrow\) \(P\left(x\right)\) không thể phân tích thành nhân tử.
* Chú ý rằng chỉ khi \(degP\left(x\right)\le3\) hoặc \(degP\left(x\right)⋮̸2\) thì từ P(x) không có nghiệm hữu tỉ mới suy ra được P(x) không phân tích được thành nhân tử nhé. Nếu \(\left\{{}\begin{matrix}degP\left(x\right)\ge4\\degP\left(x\right)⋮2\end{matrix}\right.\) thì chưa chắc điều này đã đúng. VD: Đa thức \(Q\left(x\right)=x^4+4\) không có nghiệm hữu tỉ (nó thậm chí còn không có nghiệm thực) nhưng ta vẫn có thể phân tích thành nhân tử như sau:
\(Q\left(x\right)=x^4+4=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
Phân tích đa thức thành nhân tử A )(x^2+x)^2+4x^2+4x+12