Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Nguyễn An Bình
Xem chi tiết
mai thanh
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2021 lúc 18:14

3.

Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)

B đúng

4.

Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(0;1\right)\)

A đúng

1.

B sai (thiếu điều kiện \(f'\left(x\right)=0\) tại hữu hạn điểm)

Nguyễn Việt Lâm
14 tháng 9 2021 lúc 18:55

Câu 2 đề thiếu yêu cầu

Câu 9:

Từ đồ thị ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;0\right)\) và \(\left(2;+\infty\right)\)

\(\Rightarrow\) A đúng do \(\left(-1;0\right)\subset\left(-\infty;0\right)\)

Võ KEN
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 3 2021 lúc 16:41

11. \(I=\int\limits^2_1x\sqrt{x^2+1}dx\)

Đặt \(\sqrt{x^2+1}=t\Leftrightarrow x^2=t^2-1\Rightarrow xdx=tdt\) ; \(\left\{{}\begin{matrix}x=1\Rightarrow t=\sqrt{2}\\x=2\Rightarrow t=\sqrt{5}\end{matrix}\right.\)

\(I=\int\limits^{\sqrt{5}}_{\sqrt{2}}t.tdt=\int\limits^{\sqrt{5}}_{\sqrt{2}}t^2dt=\dfrac{1}{3}t^3|^{\sqrt{5}}_{\sqrt{2}}=\dfrac{1}{3}\left(5\sqrt{5}-2\sqrt{2}\right)\)

12. Đặt \(\sqrt[3]{8-4x}=t\Rightarrow x=\dfrac{8-t^3}{4}\Rightarrow dx=-\dfrac{3}{4}t^2dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=2\\x=2\Rightarrow t=0\end{matrix}\right.\)

\(I=\int\limits^0_2t.\left(-\dfrac{3}{4}t^2dt\right)=\dfrac{3}{4}\int\limits^2_0t^3dt=\dfrac{3}{16}t^4|^2_0=3\)

13. Đặt \(\sqrt{3-2x}=t\Rightarrow x=\dfrac{3-t^2}{2}\Rightarrow dx=-tdt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=\sqrt{3}\\x=1\Rightarrow t=1\end{matrix}\right.\)

\(I=\int\limits^1_{\sqrt{3}}\dfrac{-tdt}{t}=\int\limits^{\sqrt{3}}_1dt=t|^{\sqrt{3}}_1=\sqrt{3}-1\)

Khoa Dang
Xem chi tiết
Nga Pham
4 tháng 5 2021 lúc 22:44

1..so I tired
2..I tried my best
3.. the most beautiful place in the world
4..tease the dog

1The children are playing football at the moment
2I haven't met Lan for a long time

minh nguyet
4 tháng 5 2021 lúc 22:45

Ảnh 1:

1. I stayed up late, so I am tired

2. I did not pass my exam although I tried my best

3. My homeland is the best beautiful place in the world

4. Don't tease the dog

minh nguyet
4 tháng 5 2021 lúc 22:45

Ảnh 2:

1. The children are playing football at the moment

2. I hasn't met Lan for a long time

Ghi Gjgd
Xem chi tiết
Nguyễn Huy Tú
5 tháng 3 2022 lúc 15:52

tìm n nguyên để gtri bth nguyên hả bạn ? 

\(B=\dfrac{2n-6}{n-1}=\dfrac{2\left(n-1\right)-4}{n-1}=2-\dfrac{4}{n-1}\Rightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-11-12-24-4
n203-15-3

 

Nguyễn Hoàng Vũ
5 tháng 3 2022 lúc 17:26

Ta có 2n-6\(\in Z\)

         n-1\(\in\)Z

         n-1\(\ne0\)

\(\Rightarrow\) \(\dfrac{2n-6}{n-1}\)là phân số

  Để B có giá trị nguyên thì 2n-6\(⋮\)n-1

       2n-6\(⋮\)n-1

       n-1\(⋮\)n-1\(\Rightarrow\)2(n-1)\(⋮\)n-1\(\Rightarrow\)2n-2\(⋮\)n-1

\(\Rightarrow\)  (2n-2)\(-\left(2n-6\right)\)\(⋮\)n-1

\(\Rightarrow\)2n-2-2n+6\(⋮\)n-1

\(\Rightarrow\)(2n-2n)+(6-2) \(⋮\)n-1

\(\Rightarrow\)           4         \(⋮\)n-1

\(\Rightarrow n-1\) là ước của 4

\(\Rightarrow\)n-1\(\in\){1;-1;2;-2;4;-4}

\(\Rightarrow\)n\(\in\){2;0;3;-1;5;-3}

       

Hải Nghiêm
Xem chi tiết
Nguyễn Đức Trí
10 tháng 8 2023 lúc 8:31

\(\dfrac{x}{y}=1,5\Rightarrow x=1,5y\)

\(x+y=10\Rightarrow1,5y+y=10\Rightarrow2,5y=10\Rightarrow y=10:2,5=4\)

\(\Rightarrow x=10-4=6\)

Vậy \(\left\{{}\begin{matrix}x=6\\y=4\end{matrix}\right.\)

『Kuroba ム Tsuki Ryoo...
10 tháng 8 2023 lúc 8:31

loading...  

mai thanh
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 9 2021 lúc 21:17

Đề mờ quá, bạn chụp lại được không

Nguyễn Việt Lâm
19 tháng 9 2021 lúc 15:40

11.

\(y'=3x^2+6x=3x\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

\(y''=6x+6\)

\(\Rightarrow\left\{{}\begin{matrix}y''\left(0\right)=6>0\\y''\left(-2\right)=-6< 0\end{matrix}\right.\) \(\Rightarrow x=0\) là điểm cực tiểu

\(\Rightarrow y_{CT}=y\left(0\right)=-3\)

Nguyễn Việt Lâm
19 tháng 9 2021 lúc 15:43

13.

\(y'=-4x^3+4x=-4x\left(x^2-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

\(y''=-12x^2+4\)

\(\Rightarrow\left\{{}\begin{matrix}y''\left(0\right)=0>0\\y''\left(1\right)=y''\left(-1\right)=-8< 0\end{matrix}\right.\)

\(\Rightarrow x=0\) là điểm cực tiểu

 

mai thanh
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 9 2021 lúc 19:04

1.

\(y'=x^2-6x+5=0\Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

Dấu của y' trên trục số:

undefined

Hàm đồng biến trên các khoảng \(\left(-\infty;1\right)\) và \(\left(5;+\infty\right)\)

Hàm nghịch biến trên \(\left(1;5\right)\)

3.

TXĐ: \(D=R\backslash\left\{2\right\}\)

\(y'=\dfrac{-5}{\left(x-2\right)^2}< 0;\forall x\in D\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;2\right)\) và \(\left(2;+\infty\right)\)

Nguyễn Việt Lâm
17 tháng 9 2021 lúc 19:07

4.

\(y'=4x^3+4x=4x\left(x^2+1\right)=0\Rightarrow x=0\)

Dấu của y':

undefined

Hàm đồng biến trên \(\left(0;+\infty\right)\)

Hàm nghịch biến trên \(\left(-\infty;0\right)\)

6.

Từ đồ thị ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)

Hàm nghịch biến trên \(\left(-1;1\right)\)

anniechanjapan
Xem chi tiết
Nguyễn Văn A
20 tháng 12 2022 lúc 14:55

Câu 5:

\(\left\{{}\begin{matrix}x^2+y^2=4\left('\right)\\x-y-xy=2\left(''\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2+2xy=4\\x-y-xy=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2+2xy=4\left(1\right)\\2\left(x-y\right)-2xy=4\left(2\right)\end{matrix}\right.\)

Lấy \(\left(1\right)+\left(2\right)\) ta được:

\(\left(x-y\right)^2+2\left(x-y\right)=8\)

\(\Leftrightarrow\left(x-y\right)^2+2\left(x-y\right)+1-9=0\)

\(\Leftrightarrow\left(x-y+1\right)^2-9=0\)

\(\Leftrightarrow\left(x-y-2\right)\left(x-y+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-y=2\\x-y=-4\end{matrix}\right.\)

Với \(x-y=2\) Thay vào \(\left(''\right)\) ta được:

\(2-xy=2\Rightarrow xy=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=-2\\y=0\Rightarrow x=2\end{matrix}\right.\)

Với \(x-y=4\Rightarrow x=4+y\) Thay vào \(\left('\right)\) ta được:

\(\left(4+y\right)^2+y^2=4\)

\(\Leftrightarrow y^2+8y+16+y^2-4=0\)

\(\Leftrightarrow2y^2+8y+12=0\)

\(\Leftrightarrow y^2+4y+6=0\)

\(\Leftrightarrow\left(y+2\right)^2+2=0\) (phương trình vô nghiệm).

Vậy hệ phương trình đã cho có nghiệm \(\left(x,y\right)\in\left\{\left(2;0\right),\left(0;-2\right)\right\}\)

Nguyễn Văn A
20 tháng 12 2022 lúc 15:01

Câu 6: \(\left\{{}\begin{matrix}2xy+y^2=3\left('\right)\\x^2+5xy=6\left(''\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4xy+2y^2=6\left(1\right)\\x^2+5xy=6\left(2\right)\end{matrix}\right.\)

Lấy \(\left(2\right)-\left(1\right)\) ta được:

\(x^2+xy-2y^2=0\)

\(\Leftrightarrow x^2-y^2+xy-y^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+y\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y\end{matrix}\right.\)

Với \(x=y\) Thay vào \(\left('\right)\) ta được:

\(2y.y+y^2=3\)

\(\Leftrightarrow y=\pm1\Rightarrow x=\pm1\).

Với \(x=-2y\) Thay vào \(\left('\right)\) ta được:

\(2.\left(-2y\right).y+y^2=3\)

\(\Leftrightarrow y^2=-1\) (phương trình vô nghiệm)

Vậy hệ phương trình đã cho có nghiệm \(\left(x,y\right)\in\left\{\left(1;1\right),\left(-1;-1\right)\right\}\)

Nguyễn Văn A
20 tháng 12 2022 lúc 15:06

Câu 4: \(Đk:x>-1;y>-\dfrac{1}{2}\)

Đặt \(\left\{{}\begin{matrix}a=\dfrac{1}{\sqrt{x+1}}\left(a>0\right)\\b=\dfrac{1}{\sqrt{2y+1}}\left(b>0\right)\end{matrix}\right.\)

Hệ phương trình đã cho trở thành:

\(\left\{{}\begin{matrix}2a+b=5\\3a+2b=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a+2b=10\\3a+2b=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a+b=5\\a=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x+1}}=1\\\dfrac{1}{\sqrt{2y+1}}=3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{2y+1}=\dfrac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=1\\2y+1=\dfrac{1}{9}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-\dfrac{4}{9}\end{matrix}\right.\left(nhận\right)\)