Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
HAN
Xem chi tiết
Minhh Nguyệt
Xem chi tiết
trần tuấn phát
6 tháng 4 2017 lúc 13:27

1) tôi giải theo kt lớp 9 nhé nếu theo lp 8 thì phần tích theo đk trong gttđ
   lập bảng xét dấu  
    

x                                1
lx2-1l1-x2                                    0                           x2-1
lx-1l1-x                           0                      x-1
lx2-1l+lx-1l-x2-x+2                                         x2+x-2

với x <1  => x=1   x=-2
với x>1   >x=1      x=-2
vậy  pt có 2 ng phân bịt  x =1 và x=-2
các câu còn lại lm tương tự w nhé 
 chúc bn hc giỏi !!

Minhh Nguyệt
6 tháng 4 2017 lúc 13:34

@trần tuấn phát giải giúp mik kiểu lớp 8 với! Mik k hỉu!

Chu Ngọc Quang
Xem chi tiết
Akai Haruma
11 tháng 11 2021 lúc 0:08

Lời giải:
ĐKXĐ: $x\in\mathbb{R}$

Đặt $\sqrt{x^2+x+1}=a; \sqrt{x^2-x+1}=b(a,b\geq 0)$. PT trở thành:
$a=a^2-b^2+b$

$\Leftrightarrow (a-b)(a+b)-(a-b)=0$

$\Leftrightarrow (a-b)(a+b-1)=0$

$\Rightarrow a=b$ hoặc $a+b=1$

Nếu $a=b\Leftrightarrow a^2=b^2\Leftrightarrow x^2+x+1=x^2-x+1$

$\Leftrightarrow x=0$

Nếu $a+b=1$

$\Leftrightarrow \sqrt{x^2+x+1}+\sqrt{x^2-x+1}=1$

$\Leftrightarrow \sqrt{x^2+x+1}=1-\sqrt{x^2-x+1}$

$\Rightarrow x^2+x+1=x^2-x+2-2\sqrt{x^2-x+1}$

$\Leftrightarrow 1-2x=2\sqrt{x^2-x+1}$

$\Rightarrow (1-2x)^2=4(x^2-x+1)$

$\Leftrightarrow -3=0$ (vô lý)

Vậy pt có nghiệm $x=0$

Nguyễn Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2021 lúc 21:21

Ta có: \(\dfrac{2x}{x^2-x+1}-\dfrac{x}{x^2+x+1}=\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{2x\left(x^2+x+1\right)-x\left(x^2-x+1\right)}{\left(x^2-x+1\right)\left(x^2+x+1\right)}=\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{2x^3+2x^2+2x-x^3+x^2-x}{\left(x^2-x+1\right)\left(x^2+x+1\right)}=\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{x^3+3x^2+x}{\left(x^2+1\right)^2-x^2}=\dfrac{5}{3}\)

\(\Leftrightarrow3x^3+9x^2+3x=5\left(x^4+2x^2+1-x^2\right)\)

\(\Leftrightarrow3x^3+9x^2+3x=5x^4+5x^2+5\)

\(\Leftrightarrow5x^4+5x^2+5-3x^3-9x^2-3x=0\)

\(\Leftrightarrow5x^4-3x^3-4x^2-3x+5=0\)

\(\Leftrightarrow5x^4-5x^3+2x^3-2x^2-2x^2+2x-5x+5=0\)

\(\Leftrightarrow5x^3\left(x-1\right)+2x^2\left(x-1\right)-2x\left(x-1\right)-5\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x^3+2x^2-2x-5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x^3-5x^2+7x^2-7x+5x-5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[5x^2\left(x-1\right)+7x\left(x-1\right)+5\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(5x^2+7x+5\right)=0\)

mà \(5x^2+7x+5>0\forall x\)

nên x-1=0

hay x=1

Minh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 2 2023 lúc 22:44

=4x^2-4x+1+x^3-27-4(x^2-16)

=4x^2-4x+1+x^3-27-4x^2+64

=x^3-4x+38

phương anh
Xem chi tiết

Bài làm

~ Mik học lớp 8, giải bài này ai thấy đúng thì đúng, mik sẽ làm 2 cách là cách của bạn Khánh Huyền và bạn Huy Tú, một ptrình nhưng ra 2 đáp án khác nhau là một điều phi lí, mik sẽ giải một cách dễ hiểu nhất ~

* Cách của bạn khánh Huyền:

\(\frac{x+2}{x-2}+\frac{1}{x}=\frac{8}{2x-x^2}\)             ĐKXĐ: x khác 2 và x khác 0

\(\Leftrightarrow\frac{x+2}{x-2}+\frac{1}{x}=\frac{8}{x\left(2-x\right)}\)

\(\Leftrightarrow\frac{x+2}{x-2}+\frac{1}{x}=\frac{8}{-x\left(x-2\right)}\)

\(\Leftrightarrow\frac{x+2}{x-2}+\frac{1}{x}=\frac{-8}{x\left(x-2\right)}\)

\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}=\frac{-8}{x\left(x-2\right)}\)

\(\Rightarrow x^2+2x+x-2=-8\)

\(\Leftrightarrow x^2+3x+6=0\)

\(\Leftrightarrow x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{15}{4}=0\)

\(\Leftrightarrow\left(x^2+3x+\frac{9}{4}\right)+\frac{15}{4}=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2+\frac{15}{4}=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=-\frac{15}{4}\)( Vô lí )

=> Phương trình trên vô nghiệm.

Vì sao lại vô nghiệm , vì x2 > 0 V x ( R ) . Như bên trên lại = -15/4 nên nó vô lí.

*Cách làm của bạn Huy Tú:

\(\frac{x+2}{x-2}+\frac{1}{x}=\frac{8}{2x-x^2}\)            ĐKXĐ: x khác 2, x khác 0

\(\Leftrightarrow\frac{x+2}{x-2}+\frac{1}{x}=\frac{8}{x\left(2-x\right)}\)

\(\Leftrightarrow\frac{\left(x+2\right)}{\left(x-2\right)}+\frac{1}{x}=\frac{8}{x\left(2-x\right)}\)

\(\Leftrightarrow\frac{\left(x+2\right)}{\left(x-2\right)}+\frac{1}{x}=\frac{8}{x}.\frac{1}{\left(2-x\right)}\)

\(\Leftrightarrow\frac{x+2}{x-2}+\frac{1}{x}=\frac{1}{x}.\frac{8}{2-x}\)

\(\Leftrightarrow\frac{x+2}{x-2}+\frac{1}{x}-\frac{1}{x}.\frac{8}{2-x}=0\)

\(\Leftrightarrow\frac{x+2}{x-2}+\frac{1}{x}+\frac{1}{x}.\left(-\frac{8}{2-x}\right)=0\)

\(\Leftrightarrow\frac{x+2}{x-2}+\frac{1}{x}+\frac{1}{x}.\left(\frac{8}{x-2}\right)=0\)

\(\Leftrightarrow\frac{1}{x}\left(\frac{8}{x-2}+\frac{x-2}{x-2}\right)+\frac{x+2}{x-2}=0\)

\(\Leftrightarrow\frac{1}{x}.\frac{x+6}{x-2}+\frac{x+2}{x-2}=0\)

\(\Leftrightarrow\frac{x+6}{x\left(x-2\right)}+\frac{x+2}{x-2}=0\)

\(\Leftrightarrow\frac{x+6}{x\left(x-2\right)}+\frac{x^2+2x}{x\left(x-2\right)}=0\)

\(\Rightarrow x+6+x^2+2x=0\)

\(\Leftrightarrow x^2+3x+6=0\)

\(\Leftrightarrow x^2+2.x.\frac{3}{2}+\frac{15}{4}=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=-\frac{15}{4}\)( Vô lí )

=> Phương trình trên vô nghiệm.

Lí do vô lí giống câu trên mik làm. 

Đây là mik làm hai cách khác nhau, nhưng cùng đưa về một phương trình là \(x^2+3x+6=0\).

Tức là nếu câu này đưa về phương trình \(x^2+3x+6=0\)thì mới đúng/

# Học tốt #

Khách vãng lai đã xóa
tth_new
24 tháng 4 2020 lúc 18:44

Đây là cách mình làm nhé, bài này chính xác là vô nghiệm nhé. Còn bài bạn Huy Tú \(x=\frac{-3\pm\sqrt{15}t}{2}\) vậy t là gì?

\(\frac{x+2}{x-2}+\frac{1}{x}=\frac{8}{2x-x^2}\)

ĐKXĐ::\(x\ne0;x\ne2\) 

PT \(\Leftrightarrow\frac{x+2}{x-2}+\frac{1}{x}+\frac{-8}{2x-x^2}=0\) (Chuyển vế, đối xấu)

\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}+\frac{\left(x-2\right)}{x\left(x-2\right)}+\frac{8}{x^2-2x}=0\) (đưa dấu trừ xuống mẫu, kết hợp quy đồng)

\(\Leftrightarrow\frac{\left(x^2+2x\right)+\left(x-2\right)+8}{x\left(x-2\right)}=0\) (nhân khử mẫu luôn cũng được, nhưng mình để thế cho dễ check)

\(\Leftrightarrow\frac{x^2+3x+6}{x\left(x-2\right)}=0\)

Vì \(x^2+3x+6=\left(x+\frac{3}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\)

Phương trình vô nghiệm.

P/s: Kết quả \(\frac{x^2+3x+6}{x\left(x-2\right)}\) chính xác là kết quả cuối cùng sau khi chuyển vế sang quy đồng nhé.

Đề nghị các bạn tránh tranh cãi không đáng về những vẫn đề nhỏ nhặt này, nếu cần hãy góp qua tin nhắn. Xin cảm ơn.

Khách vãng lai đã xóa
Tran Le Khanh Linh
24 tháng 4 2020 lúc 19:20

Đề mình sửa là đúng thì phân tích như sau

ĐKXĐ: \(x\ne0;x\ne2\)

\(\frac{x+2}{x-2}+\frac{1}{x}=\frac{-8}{2x-x^2}\)

\(\Leftrightarrow\frac{x\left(x-2\right)+x-2-8}{x\left(x-2\right)}=0\)

\(\Rightarrow x^3+3x-10=0\)

<=> \(\left(x+5\right)\left(x-2\right)=0\)

<=> \(\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\left(tm\right)\\x=2\left(ktm\right)\end{cases}}}\)

Vậy x=-5 là nghiệm của pt

Khách vãng lai đã xóa
Vãn Ninh 4.0
Xem chi tiết

\(Dựa.vào.ĐL.Viet:\\ \left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1.x_2=\dfrac{c}{a}=2m-4\end{matrix}\right.\\ x_1^2+x^2_2=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-1\right)^2-4.\left(m-2\right)=4m^2-8m-4m+12\\ =4.\left(m^2-3m+3\right)=4\left(m^2-3m+\dfrac{9}{4}\right)-3\ge-3\forall m\in R\\ Vậy.GTNN.của.A.là:-3\left(khi:m=\dfrac{3}{2}\right)\)

chanh
Xem chi tiết
Akai Haruma
21 tháng 5 2022 lúc 21:07

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.

Nobody
Xem chi tiết
Phan Nghĩa
10 tháng 5 2021 lúc 8:54

a,\(\frac{2}{-x^2+6x-8}-\frac{x-1}{x-2}=\frac{x+3}{x-4}\left(đkxđ:x\ne2;4\right)\)

\(< =>\frac{-2}{\left(x-2\right)\left(x-4\right)}-\frac{\left(x-1\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}=\frac{\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}\)

\(< =>-2-\left(x^2-5x+4\right)=x^2+x-5\)

\(< =>-x^2+5x-6-x^2-x+5=0\)

\(< =>-2x^2+4x-1=0\)

\(< =>2x^2-4x+1=0\)

đến đây thì pt bậc 2 dể rồi

Khách vãng lai đã xóa
Phan Nghĩa
10 tháng 5 2021 lúc 8:58

\(\frac{2}{x^3-x^2-x+1}=\frac{3}{1-x^2}-\frac{1}{x+1}\left(đkxđ:x\ne\pm1\right)\)

\(< =>\frac{2}{x^2\left(x-1\right)-\left(x-1\right)}=\frac{3}{1-x^2}-\frac{1}{x+1}\)

\(< =>\frac{2}{\left(x^2-1\right)\left(x-1\right)}=-\frac{3}{x^2-1}-\frac{1}{x+1}\)

\(< =>\frac{2}{\left(x+1\right)\left(x-1\right)^2}=\frac{-3\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}\)

\(< =>2+3x-3+x^2-2x+1=0\)

\(< =>x^2+x=0< =>x\left(x+1\right)=0< =>\orbr{\begin{cases}x=-1\left(loai\right)\\x=0\left(tm\right)\end{cases}}\)

Khách vãng lai đã xóa
Phan Nghĩa
10 tháng 5 2021 lúc 14:07

\(\frac{x+2}{x-2}-\frac{2}{x^2-2x}=\frac{1}{x}\left(đkxđ:x\ne0;x\ne2\right)\)

\(< =>\frac{\left(x+2\right)x}{\left(x-2\right)x}-\frac{2}{x\left(x-2\right)}=\frac{x-2}{x\left(x-2\right)}\)

\(< =>\left(x+2\right)x-2=x-2< =>x^2+2x-x-2+2=0\)

\(< =>x^2+x=0< =>x\left(x+1\right)=0< =>\orbr{\begin{cases}x=0\left(loai\right)\\x=-1\left(tm\right)\end{cases}}\)

nhớ kết luận tập nghiệm

Khách vãng lai đã xóa