Lời giải:
ĐKXĐ: $x\in\mathbb{R}$
Đặt $\sqrt{x^2+x+1}=a; \sqrt{x^2-x+1}=b(a,b\geq 0)$. PT trở thành:
$a=a^2-b^2+b$
$\Leftrightarrow (a-b)(a+b)-(a-b)=0$
$\Leftrightarrow (a-b)(a+b-1)=0$
$\Rightarrow a=b$ hoặc $a+b=1$
Nếu $a=b\Leftrightarrow a^2=b^2\Leftrightarrow x^2+x+1=x^2-x+1$
$\Leftrightarrow x=0$
Nếu $a+b=1$
$\Leftrightarrow \sqrt{x^2+x+1}+\sqrt{x^2-x+1}=1$
$\Leftrightarrow \sqrt{x^2+x+1}=1-\sqrt{x^2-x+1}$
$\Rightarrow x^2+x+1=x^2-x+2-2\sqrt{x^2-x+1}$
$\Leftrightarrow 1-2x=2\sqrt{x^2-x+1}$
$\Rightarrow (1-2x)^2=4(x^2-x+1)$
$\Leftrightarrow -3=0$ (vô lý)
Vậy pt có nghiệm $x=0$