m²-2mn+n²/m²-n²=m-n/m+n
cho(m,n)=1. Tìm (A,B) với A=m+n . B= m^2+n^2
Giả sử: d=(m+n,m2+n2)
⇒ m+n ⋮ d và m^2+n^2 ⋮ d
⇒m^2+n^2+2mn ⋮ dvà m^2+n^2 ⋮ d
⇒2mn⋮ d và m+n ⋮ d
⇒2m(m+n) -2mn ⋮ d và 2n(m+n)−2mn ⋮ d
⇒2m^2 ⋮ d và 2n^2 ⋮ d
mình làm tới bước này rồi nhờ mọi người giải tiếp với với cách xét m,n cùng lẻ và m,n khác tính chẵn lẽ nhé 1
Cho(m,n)=1. Tìm (A,B) với A=m+n . B= m^2+n^2
Giả sử: d=(m+n,m2+n2)
⇒ m+n ⋮ d và m^2+n^2 ⋮ d
⇒m^2+n^2+2mn ⋮ dvà m^2+n^2 ⋮ d
⇒2mn⋮ d và m+n ⋮ d
⇒2m(m+n) -2mn ⋮ d và 2n(m+n)−2mn ⋮ d
⇒2m^2 ⋮ d và 2n^2 ⋮ d
Mình làm đến bước này rồi nhờ mấy bạn làm tiếp bằng cách xét m,n cùng lẻ và m, n khác tính chẵn lẻ nhé
Rút gọn:
A= 2/m2-n2 . √9(m2+2mn+n2)/4 .Với m khác n;m khác -n
Giải giúp mình bài này nhé
Tìm n thuộc N,m thuộc N sao cho 2mn + m - 3n =5
Giữa 2,m,n và 3,n là dấu nhân nhé
Tính giá trị biểu thức sau:
\(\frac{m^3-n^3-3mn\left(m-n\right)}{m^2+n^2-2mn}\)
Với m = 6,75 ; n = -3,25
\(\frac{m^3-n^3-3mn\left(m-2\right)}{m^2+n^2-2mn}\)
\(=\frac{m^3-n^3-3m^2n+3mn^2}{m^2-2mn+n^2}\)
\(=\frac{m^3-3m^2n-3mn^2-n^3}{m^2-2mn+n^2}=\frac{\left(m-n\right)^3}{\left(m-n\right)^2}=m-n\)
Thay m = 6,75 , n = -3,25 ta có :
6,75 - ( - 3,25 ) = 6,75 + 3,25 = 10
Vậy giá trị biểu thức trên bằng 10 khi m = 6,75 ; n = -3,25
Cho \(A=\left(\sqrt{m+\frac{2mn}{1-n^2}}+\sqrt{m-\frac{2mn}{1+n^2}}\right)\sqrt{1+\frac{1}{n^2}}\left(m\ge0,n>1\right)\)
a,Rút gọn A
b,Tính A biết \(m=\sqrt{56+24\sqrt{5}}\)
c,Tìm GTNN của A
\(A=\left(\sqrt{m+\frac{2mn}{1-n^2}}+\sqrt{m-\frac{2mn}{1+n^2}}\right)\sqrt{1+\frac{1}{n^2}}\)
Biến đổi ta được : \(\left(\sqrt{a'b}-\sqrt{ab'}\right)^2+\left(\sqrt{a'c}-\sqrt{ac'}\right)^2+\left(\sqrt{b'c}-\sqrt{bc'}\right)^2=0\)
Cho m,n là các số tự nhiên dương thỏa mãn: \(\sqrt{6}-\frac{m}{n}>0\). CMR: \(\sqrt{6}-\frac{m}{n}>\frac{1}{2mn}\)
Ta có: \(\sqrt{6}-\frac{m}{n}>0\Leftrightarrow\sqrt{6}n-m>0\Leftrightarrow6n^2>m^2\Leftrightarrow6n^2\ge m^2+1\) (Do m, n là các số tự nhiên).
Mặt khác \(m^2+1\equiv1;2\left(mod3\right)\Rightarrow m^2+1⋮̸3\).
Mà \(6n^2⋮3\) nên \(6n^2\ge m^2+1\).
Bất đẳng thức cần chứng minh tương đương với:
\(\sqrt{6}n>\frac{1}{2m}+m\Leftrightarrow6n^2>\left(\frac{1}{2m}+m\right)^2\).
Ta chỉ cần chứng minh:
\(\left(\frac{1}{2m}+m\right)^2< m^2+2\Leftrightarrow\frac{1}{4m^2}< 1\Leftrightarrow4m^2>1\) (luôn đúng với mọi m \(\in\) N*).
Vậy ta có đpcm.
rút gọn rồi tính với m+n=2013
\(A=\dfrac{m\left(m+5\right)+n\left(n+5\right)+2\left(mn-3\right)}{m\left(m+6\right)+n\left(n+6\right)+2mn}\)
\(A=\dfrac{m^2+5m+n^2+5n+2mn-6}{m^2+6m+n^2+6n+2mn}\)
\(=\dfrac{\left(m+n\right)^2+5\left(m+n\right)-6}{\left(m+n\right)^2+6\left(m+n\right)}\)
\(=\dfrac{2013^2+5\cdot2013-6}{2013^2+6\cdot2013}=\dfrac{2012}{2013}\)
Tim so tu nhien m,n sao cho:\(m^2+n^2+2mn+m+3n+2\)chinh phuong
Cho \(A=\frac{m}{m+1}.|n^2-1|.\frac{2mn}{n^2+1}\)
\(B=m:\frac{2mn^3-6mn^2+4mn}{n^4-3n^3+3n^2-3n+2}\)
Tính A + B