x x 90 =270
\(3sin^2\left(180-x\right)+2sin\left(90+x\right)cos\left(90+x\right)-5sin^2\left(270+x\right)=0\)
Rút gọn biểu thức:
\(C=2sin\left(90^0+x\right)+sin\left(90^0-x\right)+sin\left(270^0+x\right)-cos\left(90^0-x\right)\)
\(C=2cosx+cosx-cosx-sinx=2cosx-sinx\)
\(3\sin^2\left(180-x\right)+2\sin\left(90+x\right)\cos\left(90+x\right)-5\sin^2\left(270+x\right)=0\)
\(\Leftrightarrow3sin^2x-2sinx.cosx-5cos^2x=0\)
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)
\(3tan^2x-2tanx-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=\frac{5}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-45^0+k180^0\\x=arctan\left(\frac{5}{3}\right)+k180^0\end{matrix}\right.\)
Tìm các giá trị lượng giác còn lại biết:
a) Cho sin \(x=-\dfrac{4}{5}\)và \(90^o< x< 180^o\)
b) Cho \(\sin x=\dfrac{\sqrt{3}}{2}\)và \(270^o< x< 360^o\)
c) Cho \(\cos x=-\dfrac{1}{3}\)và \(0^o< x< 90^o\)
a: Sửa đề: sin x=4/5
cosx=-3/5; tan x=-4/3; cot x=-3/4
b: 270 độ<x<360 độ
=>cosx>0
=>cosx=1/2
tan x=căn 3; cot x=1/căn 3
Phần 1: Trắc nghiệm
Câu 1: Đặt ƯCLN(90, 135, 270) = x. Khi đó giá trị của x là:
A. 90 B. 5 C. 9 D. 45
Câu 2: Kết luận nào sau đây là khẳng định đúng?
A. ƯC(180,234) = Ư(18) B. ƯC(180, 234) = Ư(90)
C. ƯC(180,234) = Ư(36) D. C. ƯC(180,234) = Ư(72)
Câu 3: Đặt BCNN(27, 315) = y. Khi đó giá trị của y là:
A. y = 9 B. y = 945 C. y = 135 D. y = 189
Câu 4: Có bao nhiêu số tự nhiên có ba chữ số là bội chung của 11 và 12?
A. 6 B. 7 C. 8 D. 9
Phần 2: Một số dạng toán vận dụng
Câu 5: Một lớp có 27 học sinh nam và 18 học sinh nữ. Có bao nhiêu cách chia lớp đó thành các tổ sao
cho số học sinh nam và học sinh nữ ở mỗi tổ là như nhau? Cách chia nào để mỗi tổ có số học sinh ít
nhất?
Câu 6: Trong một đợt trồng cây, học sinh của lớp 6B đã trồng được một số cây. Số đó là số tự nhiên
nhỏ nhất thỏa mãn chia 3 dư 2, chia 4 dư 3, chia 5 dư 4, chia 10 dư 9. Hỏi học sinh lớp 6B đã trồng
được bao nhiêu cây?
Câu 7: Tìm số tự nhiên nhỏ nhất sao cho số đó chia cho 3 dư 2, chia cho 5 dư 3, chia cho 7 dư 4.
Phần 2
Câu 5:
Gọi x (tổ) là số tổ có thể chia (x ∈ ℕ*)
⇒ x ∈ ƯC(27; 18)
Ta có:
27 = 3³
18 = 2.3²
⇒ ƯCLN(27; 18) = 3² = 9
⇒ x ∈ ƯC(27; 18) = Ư(9) = {1; 3; 9}
Vậy có 3 cách chia tổ là: 1 tổ; 3 tổ và 9 tổ
Để mỗi tổ có số học sinh ít nhất thì số tổ là lớn nhất là 9 tổ
Phần 2
Câu 6
Gọi x (cây) là số cây cần tìm (x ∈ ℕ*)
Do số cây là nhỏ nhất và khi chia 3 dư 2, chia 4 dư 3, chia 5 dư 4, chia 10 dư 9 nên x + 1 = BCNN(3; 4; 5; 10)
Ta có:
3 = 3
4 = 2²
5 = 5
10 = 2.5
⇒ x + 1 = BCNN(3; 4; 5; 10) = 2².3.5 = 60
⇒ x = 60 - 1 = 59
Vậy số cây cần tìm là 59 cây
Phần 2
Câu 7
Gọi x là số cần tìm (x ∈ ℕ*)
Do x chia 3 dư 2
⇒ x - 2 ∈ B(3) = {0; 3; 6; 9; ...}
⇒ x ∈ {2; 5; 8; 11; 14; 17; 20; 23; ...; 50; 53; ...}
Do x chia 5 dư 3
⇒ x - 3 ∈ B(5) = {0; 5; 10; 15; 20; ...}
⇒ x ∈ {3; 8; 13; 18; 23; ...; 48; 53; ...}
Do x chia 7 dư 4
⇒ x - 4 ∈ B(7) = {0; 7; 14; 21; 28; ...}
⇒ x ∈ {4; 11; 18; 25; 32; 39; 46; 53; ...}
⇒ x = 53
Vậy số cần tìm là 53
Phần 1: Trắc nghiệm
Câu 1: Đặt ƯCLN(90, 135, 270) = x. Khi đó giá trị của x là:
A. 90 B. 5 C. 9 D. 45
Câu 2: Kết luận nào sau đây là khẳng định đúng?
A. ƯC(180,234) = Ư(18) B. ƯC(180, 234) = Ư(90)
C. ƯC(180,234) = Ư(36) D. C. ƯC(180,234) = Ư(72)
Câu 3: Đặt BCNN(27, 315) = y. Khi đó giá trị của y là:
A. y = 9 B. y = 945 C. y = 135 D. y = 189
Câu 4: Có bao nhiêu số tự nhiên có ba chữ số là bội chung của 11 và 12?
A. 6 B. 7 C. 8 D. 9
Câu 1:
Ta có:
\(90=2\cdot3^2\cdot5\)
\(135=3^3\cdot5\)
\(270=2\cdot5\cdot3^3\)
\(\Rightarrow x=ƯCLN\left(90;135;270\right)=3^2\cdot5=45\)
Chọn đáp án D
Câu 3:
Ta có:
\(27=3^3\)
\(315=3^2\cdot5\cdot7\)
\(\Rightarrow y=BCNN\left(27;315\right)=3^3\cdot5\cdot7=945\)
Chọn phương án B
Câu 4: Ta có:
\(BCNN\left(11;12\right)=132\)
\(\Rightarrow BC\left(11;12\right)=\left\{0;132;264;396;528;660;792;924;...\right\}\)
Vậy có 7 số có 3 chữ số là bội chung của 11 và 12
Chọn phương án B
Câu 2:
Ta có:
A. \(ƯC\left(180;243\right)\) (đúng)
B. \(ƯC\left(180,234\right)=Ư\left(90\right)\) (sai)
C. \(ƯC\left(180;234\right)=Ư\left(36\right)\) (sai)
D. \(ƯC\left(180;234\right)=Ư\left(72\right)\) (sai)
Chọn phương án A
1 phân tử marn có số lượng các nucleotit như sau u=90,a=270,g=360,x=180soos lượng nucleotit từng loại của gen tạo ra mản nói trên là
Tính nhanh: 270 x 20 + 58 x 270 + 28 x 270
270*20+58*270+28*270=270*/20+58+28\=270*100=270
bài 3: với số tiền để mua 270 mét vải loại I có thể mua được bao nhiêu 1 mét vải loại II chỉ bằng 90% giá tiền 1 mét vải loại I?
bài 4:tìm x biết :(-1/3 - 2/5) x+ 0,12=-0,38
cảm ơn nhiều <33