Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
pham thi thu thao
Xem chi tiết
Hai ne
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 20:13

Bài 1:

a: \(M=x^2-10x+3\)

\(=x^2-10x+25-22\)

\(=\left(x^2-10x+25\right)-22\)

\(=\left(x-5\right)^2-22>=-22\forall x\)

Dấu '=' xảy ra khi x-5=0

=>x=5

b: \(N=x^2-x+2\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi x-1/2=0

=>x=1/2

c: \(P=3x^2-12x\)

\(=3\left(x^2-4x\right)\)

\(=3\left(x^2-4x+4-4\right)\)

\(=3\left(x-2\right)^2-12>=-12\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

Nguyen Tien HUng
Xem chi tiết
Vũ Tuấn Hoàng
5 tháng 1 lúc 20:08

???

Mai Trung Hải Phong
5 tháng 1 lúc 20:30

\(M=\left|x-22\right|+\left|x+12\right|\)

\(M=\left|22-x\right|+\left|x+12\right|\ge\left|22-x+x+12\right|\)

\(M=\left|22-x\right|+\left|x+12\right|\ge34\)

\(M\ge34\)

Dấu "\(=\)" xảy ra khi:

\(\left(22-x\right)\left(x+12\right)\ge0\)

\(TH1:22-x\ge0;x+12\ge0\)

\(\Rightarrow22\ge x\ge-12\)

\(TH2:22-x\le0;x+12\ge0\)

\(\Rightarrow22\le x;x\ge12\left(vô.lý\right)\)

Vậy \(GTNN\) của \(M\) là \(34\) khi \(22\ge x\ge-12\)

Nguyen Tien Hung
Xem chi tiết

Áp dụng BĐT trị tuyệt đối:

\(M=\left|22-x\right|+\left|x+12\right|\ge\left|22-x+x+12\right|=34\)

Vậy \(M_{min}=34\) khi \(\left(22-x\right)\left(x+12\right)\ge0\Rightarrow-12\le x\le22\)

Nguyễn Sun Sin
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2020 lúc 16:44

\(A=x-1+\dfrac{9}{x-1}+4\ge2\sqrt{\dfrac{9\left(x-1\right)}{x-1}}+4=10\)

\(A_{min}=10\) khi \(x=4\)

Nguyễn Huy Tú
19 tháng 1 2021 lúc 6:18

\(A=x+\frac{9}{x-1}+3\Leftrightarrow x-1+\frac{9}{x-1}+3\)

Áp dụng cosi 2 số đầu ta được : 

\(x-1+\frac{9}{x-1}\ge2\sqrt{\left(x-1\right)\frac{9}{x-1}}=6\)

Dễ dàng suy ra : \(A\ge3+6=9\)

Dấu ''='' xảy ra <=> \(x-1=\frac{9}{x-1}\Leftrightarrow\left(x-1\right)^2=9\)

TH1 : \(x-1=3\Leftrightarrow x=4\)( chọn )

TH2 : \(x-1=-3\Leftrightarrow x=-2\)( bỏ vì x > 1 ) theo giả thiết 

Vậy GTNN A là 9 <=> x = 4 

Khách vãng lai đã xóa
Hoàng An Nhiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 20:43

Ta có: \(A=\left(x-3\right)^2+\left(11-x\right)^2\)

\(=x^2-6x+9+x^2-22x+121\)

\(=2x^2-28x+130\)

\(=2\left(x^2-14x+49+16\right)\)

\(=2\left(x-7\right)^2+32\ge32\forall x\)

Dấu '=' xảy ra khi x=7

Nguyễn Hưng Thuận
Xem chi tiết
Domitill Koul
19 tháng 1 2018 lúc 19:34

Do l2x-22I \(\ge0\)

l12-xl\(\ge0\)

2lx-13l\(\ge0\)

Nên D=l2x-22l+l12-xl+2lx-13l\(\ge0\)

Min D = 0\(\Leftrightarrow\hept{\begin{cases}2x-22=0\\12-x=0\\x-13=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=11\\x=12\\x=13\end{cases}}}\)

             Vậy ko có gtri x thỏa mãn khi Min D =0

Nguyễn Hưng Thuận
19 tháng 1 2018 lúc 19:52

thanks

THẮNG SANG CHẢNH
Xem chi tiết
Tớ Chưa Bồ
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:38

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:39

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)