rút gọn: \(1+2+2^2+2^3+2^4+...+2^{2014}\)
Rút gọn biểu thức
Rút gọn biểu thức
(x-1)(x-2)(x+2)-(x-3)^3
(xy-1)(xy-2)-(xy-2)^2
(x-1)(x-2)(x+2)-(x-3)\(^3\)
=(x-1)(x\(^2\)-4)-(x-3)\(^3\)
(xy-1)(xy-2)-(xy-2)\(^2\)
=(xy-2)(xy-1-xy+2)
=xy-2
Rút gọn
a) (x^2-1)^3 - (x^4+x^2+1) ).(x^2-1)
b) (x^4 - 3x^2+9).(x^2+3) - (3+x^2)^3
Rút gọn:
\(Y=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{99}-\sqrt{100}}\)
Tính:
\(Y=\frac{2014}{\sqrt{1}+\sqrt{2}}+\frac{2014}{\sqrt{2}+\sqrt{3}}+....+\frac{2014}{\sqrt{99}+\sqrt{100}}\)
P/s: Ai giải đc nào, mk thì mk giài ra rồi
Giải 2 bài luôn
Rút gọn:
\(Y=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{99}-\sqrt{100}}\)
\(Y=\sqrt{2}-\sqrt{1}+\sqrt{2}-\sqrt{3}+....+\sqrt{100}-\sqrt{99}\)
\(Y=\sqrt{10}-1\)
\(Y=9\)
Tính:
\(Y=\frac{2014}{\sqrt{1}+\sqrt{2}}+\frac{2014}{\sqrt{2}+\sqrt{3}}+....+\frac{2014}{\sqrt{99}+\sqrt{100}}\)
\(Y=\sqrt{2}-\sqrt{1}+\sqrt{2}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)
\(Y=\sqrt{10}-1\)
\(Y=9\)
\(Y=2014.9\)
\(Y=18126\)
Y=\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\sqrt{2}-1+\sqrt{2}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)
\(=-1+\sqrt{100}=\sqrt{100}-1=10-1=9\)
Rút gọn biểu thức sau
Q=2-1/3+1/4 tất cả trên 2+1/6-1/4
\(Q=\frac{2-\frac{1}{3}+\frac{1}{4}}{2+\frac{1}{6}-\frac{1}{4}}\)
\(Q=\frac{2-\frac{1}{3}}{2+\frac{1}{6}}\)
Còn lại dễ mà, bn tự làm nhé!
rút gọn B=1/2^2+1/2^3+....+1/2^100
B=1/22+1/23+...+1/2100
2B=1/21+1/22+...1/299
2B-B=(1/21+1/22+...+1/299)-(1/22+1/23+...+1/2100)
B=1/21-1/2100=299/2100-1/2100=299-1/2100
Rút gọn biểu thức
3(22 + 1)(24 + 1)(28 + 1)(216 + 1)
Lời giải:
Áp dụng hằng đẳng thức \((a-1)(a+1)=a^2-1\) ta có:
\(A=3(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)\)
\(=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)\)
\(=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)\)
\(=(2^8-1)(2^8+1)(2^{16}+1)\)
\(=(2^{16}-1)(2^{16}+1)=2^{32}-1\)
rút gọn biểu thức:
D=\(\dfrac{5}{2x^2+6x}-\dfrac{4-3x^2}{x^2-9}\)- 3
\(D=\dfrac{5}{2x^2+6x}-\dfrac{4-3x^2}{x^2-9}-3\) (đk:\(x\ne3;x\ne-3\))
\(=\dfrac{5}{2x\left(x+3\right)}-\dfrac{4-3x^2}{\left(x-3\right)\left(x+3\right)}-3\)
\(=\dfrac{5\left(x-3\right)}{2x\left(x-3\right)\left(x+3\right)}-\dfrac{\left(4-3x^2\right).2x}{2x\left(x-3\right)\left(x+3\right)}-\dfrac{3.2x\left(x-3\right)\left(x+3\right)}{2x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{5x-15-8x+6x^3-6x\left(x^2-9\right)}{2x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{51x-15}{2x\left(x-3\right)\left(x+3\right)}\)
Rút gọn biểu thức:
a/ A=100^2-99^2+98^2-97^2+...+2^2-1^2
b/ B=3(2^2+1)(2^4+1)...!2^64+1)+1
\(A=100^2-99^2+98^2-97^2+....+2^2-1^2\)
\(=\left(100-99\right).\left(100+99\right)+\left(98-97\right).\left(98+97\right)+....+\left(2-1\right).\left(2+1\right)\)
\(=1+2+....+97+98+99+100=\frac{100.\left(100+1\right)}{2}=5050\)
\(B=3\left(2^2+1\right)\left(2^4+1\right)....\left(2^{64}+1\right)+1=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(=\left(2^4-1\right)\left(2^4+1\right)......\left(2^{64}+1\right)+1=\left(2^8-1\right).....\left(2^{64}+1\right)+1\)
Tiếp tục rút gọn như vậy,ta đc \(B=\left(2^{64}-1\right)\left(2^{64}+1\right)=2^{128}-1+1=2^{128}\)
Rút gọn : \(\frac{a^2}{a^2-1}-\frac{a^2}{1+a^2}.\left(\frac{a}{a+1}+\frac{1}{a^2+a}\right)\)
a) Tìm tập xác định và rút gọn A
b) Tìm a để A = 3
a: ĐKXĐ: \(a\notin\left\{0;1;-1\right\}\)
\(A=\dfrac{a^2}{\left(a-1\right)\left(a+1\right)}-\dfrac{a^2}{a^2+1}\cdot\dfrac{a^2+1}{a\left(a+1\right)}\)
\(=\dfrac{a^2}{\left(a-1\right)\left(a+1\right)}-\dfrac{a}{a+1}\)
\(=\dfrac{a^2-a^2+a}{\left(a-1\right)\left(a+1\right)}=\dfrac{a}{\left(a-1\right)\left(a+1\right)}=\dfrac{a}{a^2-1}\)
b: Để A=3 thì \(3a^2-3=a\)
\(\Leftrightarrow2a^2=3\)
hay \(a\in\left\{\dfrac{\sqrt{6}}{2};-\dfrac{\sqrt{6}}{2}\right\}\)