Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ánh Phạm 3

Những câu hỏi liên quan
Delwynne
Xem chi tiết
E he he
5 tháng 3 2022 lúc 21:32

A

Tạ Tuấn Anh
5 tháng 3 2022 lúc 21:32

A

Ng Ngọc
5 tháng 3 2022 lúc 21:32

A

Trần Chí Công
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2023 lúc 23:47

a: Xét ΔABC có: 

AB+AC>BC(BĐT tam giác)

b: Xét ΔABC có AB+AC>BC(BĐT tam giác)

d: (AB+AC)^2=AB^2+AC^2+2*AB*AC

=BC^2+2*AH*BC<BC^2+2*AH*BC+AH^2=(BC+AH)^2

=>AB+AC<AH+BC

Dat Nguyen
Xem chi tiết
Lê Chí Quang
Xem chi tiết
phương đặng
Xem chi tiết
Vũ Minh Tuấn
7 tháng 3 2020 lúc 11:00

3. Cho tam giác ABC vuông tại A. Theo định lí Pitago ta có:

A. AC mũ 2= AB mũ 2 + BC mũ 2 B. AB mũ 2= AC mũ 2 + BC mũ 2

C. BC mũ 2 = AB mũ 2 + AC mũ 2 D. BC mũ 2 = AB mũ 2 - AC mũ 2

Chúc bạn học tốt!

Khách vãng lai đã xóa
Doan Minh Quân
Xem chi tiết
Đặng Hữu Hiếu
25 tháng 5 2018 lúc 9:46

Ta có (a-b)²≥0 nên a²+b²≥2ab, tương tự b²+c²≥2bc, c²+a²≥2ca, cộng vế với vế rồi chia 2 2 vế ta có a²+b²+c²≥ab+bc+ca

a, b, c là 3 cạnh tam giác nên a+b>c → c(a+b)>c², tương tự b(a+c)>b², a(b+c)>a², cộng vế với vế ta có 2(ab+bc+ca)>a²+b²+c²

๖Fly༉Donutღღ
25 tháng 5 2018 lúc 12:51

Áp dụng BĐT Cauchy cho 3 số không âm a^2 + b^2 + c^2 là ra nha bạn

QuocDat
25 tháng 5 2018 lúc 21:19

o0o Nguyễn Việt Hiếu o0o =)) người ta đã ko bt , m ko chỉ còn câu câu trả lời ...... cạn lời

Hạnh Hồng
Xem chi tiết
Nguyễn Ngọc Huy Toàn
18 tháng 3 2022 lúc 16:08

A

Chuu
18 tháng 3 2022 lúc 16:09

AB^2=AC^2+BC^2

(っ◔◡◔)っ ♥ Kiera ♥
18 tháng 3 2022 lúc 16:10

A

Nguyen Ngoc Quy
Xem chi tiết
Trang Hoang
Xem chi tiết
Mr Lazy
9 tháng 8 2015 lúc 21:55

\(a\text{) }\)Áp dụng: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (a, b > 0). Dấu "=" xảy ra khi a = b.

\(\frac{1}{a^2+b^2}+\frac{1}{ab}=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\)

\(=6\left[\frac{1}{\left(a+b\right)^2}+\frac{27}{8}\left(a+b\right)+\frac{27}{8}\left(a+b\right)\right]-\frac{81}{2}\left(a+b\right)\)

\(\ge6.3\sqrt[3]{\frac{1}{\left(a+b\right)^2}.\frac{27}{8}\left(a+b\right).\frac{27}{8}\left(a+b\right)}-\frac{81}{2}\left(a+b\right)\)

\(=\frac{81}{2}-\frac{81}{2}\left(a+b\right)\)

Tương tự: \(\frac{1}{b^2+c^2}+\frac{1}{bc}\ge\frac{81}{2}-\frac{81}{2}\left(b+c\right)\)

\(\frac{1}{c^2+a^2}+\frac{1}{ca}\ge\frac{81}{2}-\frac{81}{2}\left(c+a\right)\)

Cộng theo vế ta được 

\(A\ge3.\frac{81}{2}-81\left(a+b+c\right)=3.\frac{81}{2}-81=\frac{81}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}.\)

Vậy GTNN của A là \(\frac{81}{2}.\)

 

 

Hoàng Thị Minh Phương
Xem chi tiết